Math 220A HW 4 Solutions

6. Evaluate the following cross ratios:

(a) $(7+i, 1, 0, \infty)$

Solution: The formula for the cross ratio is

$$(z_1, z_2, z_3, z_4) = \frac{z_1 - z_3}{z_1 - z_4} \frac{z_2 - z_4}{z_2 - z_3}$$

since putting z_2, z_3, z_4 in the place of z_1 has the desired properties. Since $z_4 = \infty$ here, one can check that removing the terms involving z_4 gives the correct images, and we have

$$(7+i, 1, 0, \infty) = \frac{(7+i-0)}{1-0}$$

= 7+i

(b) (2, 1 - i, 1, 1 + i)

Solution: This is even more straightforward:

$$(2, 1 - i, 1, 1 + i) = \frac{1}{1 - i} \frac{-2i}{-i}$$
$$= 1 + i$$

(c) (0, 1, *i*, −1) **Solution:**

$$(0, 1, i, -1) = \frac{-i}{1} \frac{2}{1-i}$$
$$= 1-i$$

(d) $(i-1,\infty,1+i,0)$

Solution: By the same reasoning as in part a, we should remove the z_2 terms here, yielding

$$(i - 1, \infty, 1 + i, 0) = \frac{-2}{i - 1}$$

= -(1 + i)

7. If $Tz = \frac{az+b}{cz+d}$, find z_2, z_3, z_4 (in terms of a, b, c, d) such that $Tz = (z, z_2, z_3, z_4)$.

Solution: In other words, this is just solving

$$Tz_2 = 1, Tz_3 = 0, Tz_4 = \infty.$$

We're assuming here that T is a Möbius transformation (otherwise the cross ratio might be impossible to define!), so we must have

$$T^{-1}1 = z_2, T^{-1}0 = z_3, T^{-1}\infty = z_4.$$

Luckily, T^{-1} is readibly computable in terms of a, b, c, d:

$$T^{-1}z = \frac{dz - b}{-cz + a}.$$

This shows that

$$z_2 = \frac{d-b}{a-c}, z_3 = -\frac{b}{a}, z_4 = -\frac{d}{c}.$$

8. If $Tz = \frac{az+b}{cz+d}$, show that $T(\mathbb{R}_{\infty}) = \mathbb{R}_{\infty}$ iff we can choose a, b, c, d to be real.

Solution: Again, we should assume T is invertible, since otherwise it is constant and $T(\mathbb{R}_{\infty})$ will certainly not be \mathbb{R}_{∞} . The "if" direction is clear, so assume $T(\mathbb{R}_{\infty}) = \mathbb{R}_{\infty}$. We want to show that we can write a, b, c, d as real multiples of a single element, so we look at their ratios. Plugging in 0 and ∞ , we get that $\frac{a}{c}$ and $\frac{b}{d}$ are real as long as the denominators are nonzero. However, T is invertible, so $T^{-1}(\mathbb{R}_{\infty}) = \mathbb{R}_{\infty}$, and the same procedure shows that $\frac{d}{c}, \frac{b}{a}$ are real with the same caveats.

Notice also that if we compose with any other Möbius transformation preserving \mathbb{R}_{∞} , the resulting transformation S will still preserve \mathbb{R}_{∞} . Doing so with $z \mapsto \frac{1}{z}$, we get

$$Sz = \frac{cz+d}{az+b}$$

which must also preserve \mathbb{R}_{∞} . This means that (unless a = d = 0, which we will cover later) we can assume that $cd \neq 0$, since otherwise we can swap them with a and b, and these are guaranteed to be nonzero if c or d (respectively) is by the invertibility of T.

This being the case, the way forward is clear: $\frac{a}{c}$ and $\frac{d}{c}$ are already in \mathbb{R} , and so is $\frac{b}{c} = \frac{b}{d}\frac{d}{c}$. This is true in the only case we didn't cover as well, because then $Tz = \frac{b}{cz}$, so T(1) being real gives us what we want. Therefore, we can scale everything by c^{-1} to get real numbers.

9. If $Tz = \frac{az+b}{cz+d}$, find necessary and sufficient conditions that $T(\Gamma) = \Gamma$.

Solution: As before, T^{-1} will also preserve Γ if and only if T does, and therefore it will preserve symmetry with respect to Γ . In particular, 0 and ∞ will be sent to a symmetric pair. Let $a = T^{-1}(0)$, and note that a cannot be in Γ by our assumption. We can check (for example, using the calculation on page 51 of the book) that a's inverse with respect to Γ is $a^* := \frac{1}{a}$. This means that T must be of the form

$$Tz = b\frac{z-a}{z-a^*}, b \in \mathbb{C}^{\times}.$$

If a = 0 or ∞ , then Tz = bz or $\frac{b}{z}$, and so |b| = 1 is the only condition needed for $T(\Gamma) = \Gamma$. Otherwise, we can pull out an \bar{a} from the bottom to rewrite T in the form

$$Tz = c \frac{z-a}{\bar{a}z - 1}.$$

Which c are allowed? We can find out by observing that

$$|Tz|^{2} = \frac{(z-a)(\bar{z}-\bar{a})}{(\bar{a}z-1)(a\bar{z}-1)}$$
$$= |c|^{2} \frac{|a|^{2}+|z|^{2}-(\bar{a}z+\bar{z}a)}{|a|^{2}|z|^{2}+1-(\bar{a}z+\bar{z}a)}$$

If $z \in \Gamma$, the right hand side reduces to $|c|^2$, meaning $T(\Gamma) = \Gamma$ if and only if $c \in \Gamma$. Thus, we can say that $T(\Gamma) = \Gamma$ if and only if

$$T(z) = c \frac{z-a}{\bar{a}z-1}, c \in \Gamma, a \notin \Gamma$$

with the usual convention if $a = \infty$.

10. Let $D = \{z : |z| < 1\}$, and find all Möbius transformations T such that T(D) = D.

Solution: By continuity, any such T satisfy $T(\Gamma) = \Gamma$ as well, so we need only check among the T described in previous problem. So let

$$Tz = c\frac{z-a}{\bar{a}z-1}, c \in \Gamma$$

Since $Ta = 0 \in D$, we must have $a \in D$ as well. We claim this is the only condition necessary. To see this, we just need to check whether $|Tz|^2 < 1$ for $z \in D$. By our earlier calculation, this is equivalent ¹ to asking whether

$$|a|^{2} + |z|^{2} - (\bar{a}z + \bar{z}a) < |a|^{2}|z|^{2} + 1 - (\bar{a}z + \bar{z}a),$$

or in other words, whether

$$|a|^{2} + |z|^{2} < |a|^{2}|z|^{2} + 1.$$

This is true whenever |z| < 1, so we are done.

¹the denominator in that expression is never 0 if $\bar{a}, z \in D$