Math 220A HW 4 Solutions

6. Evaluate the following cross ratios:

(a) $(7+i, 1,0, \infty)$

Solution: The formula for the cross ratio is

$$
\left(z_{1}, z_{2}, z_{3}, z_{4}\right)=\frac{z_{1}-z_{3}}{z_{1}-z_{4}} \frac{z_{2}-z_{4}}{z_{2}-z_{3}}
$$

since putting z_{2}, z_{3}, z_{4} in the place of z_{1} has the desired properties. Since $z_{4}=\infty$ here, one can check that removing the terms involving z_{4} gives the correct images, and we have

$$
\begin{aligned}
(7+i, 1,0, \infty) & =\frac{(7+i-0)}{1-0} \\
& =7+i
\end{aligned}
$$

(b) $(2,1-i, 1,1+i)$

Solution: This is even more straightforward:

$$
\begin{aligned}
(2,1-i, 1,1+i) & =\frac{1}{1-i} \frac{-2 i}{-i} \\
& =1+i
\end{aligned}
$$

(c) $(0,1, i,-1)$

Solution:

$$
\begin{aligned}
(0,1, i,-1) & =\frac{-i}{1} \frac{2}{1-i} \\
& =1-i
\end{aligned}
$$

(d) $(i-1, \infty, 1+i, 0)$

Solution: By the same reasoning as in part a, we should remove the z_{2} terms here, yielding

$$
\begin{aligned}
(i-1, \infty, 1+i, 0) & =\frac{-2}{i-1} \\
& =-(1+i)
\end{aligned}
$$

7. If $T z=\frac{a z+b}{c z+d}$, find z_{2}, z_{3}, z_{4} (in terms of $\left.a, b, c, d\right)$ such that $T z=\left(z, z_{2}, z_{3}, z_{4}\right)$.

Solution: In other words, this is just solving

$$
T z_{2}=1, T z_{3}=0, T z_{4}=\infty
$$

We're assuming here that T is a Möbius transformation (otherwise the cross ratio might be impossible to define!), so we must have

$$
T^{-1} 1=z_{2}, T^{-1} 0=z_{3}, T^{-1} \infty=z_{4} .
$$

Luckily, T^{-1} is readibly computable in terms of a, b, c, d :

$$
T^{-1} z=\frac{d z-b}{-c z+a} .
$$

This shows that

$$
z_{2}=\frac{d-b}{a-c}, z_{3}=-\frac{b}{a}, z_{4}=-\frac{d}{c} .
$$

8. If $T z=\frac{a z+b}{c z+d}$, show that $T\left(\mathbb{R}_{\infty}\right)=\mathbb{R}_{\infty}$ iff we can choose a, b, c, d to be real.

Solution: Again, we should assume T is invertible, since otherwise it is constant and $T\left(\mathbb{R}_{\infty}\right)$ will certainly not be \mathbb{R}_{∞}. The "if" direction is clear, so assume $T\left(\mathbb{R}_{\infty}\right)=\mathbb{R}_{\infty}$. We want to show that we can write a, b, c, d as real multiples of a single element, so we look at their ratios. Plugging in 0 and ∞, we get that $\frac{a}{c}$ and $\frac{b}{d}$ are real as long as the denominators are nonzero. However, T is invertible, so $T^{-1}\left(\mathbb{R}_{\infty}\right)=\mathbb{R}_{\infty}$, and the same procedure shows that $\frac{d}{c}, \frac{b}{a}$ are real with the same caveats.

Notice also that if we compose with any other Möbius transformation preserving \mathbb{R}_{∞}, the resulting transformation S will still preserve \mathbb{R}_{∞}. Doing so with $z \mapsto \frac{1}{z}$, we get

$$
S z=\frac{c z+d}{a z+b}
$$

which must also preserve \mathbb{R}_{∞}. This means that (unless $a=d=0$, which we will cover later) we can assume that $c d \neq 0$, since otherwise we can swap them with a and b, and these are guaranteed to be nonzero if c or d (respectively) is by the invertibility of T.

This being the case, the way forward is clear: $\frac{a}{c}$ and $\frac{d}{c}$ are already in \mathbb{R}, and so is $\frac{b}{c}=\frac{b}{d} \frac{d}{c}$. This is true in the only case we didn't cover as well, because then $T z=\frac{b}{c z}$, so $T(1)$ being real gives us what we want. Therefore, we can scale everything by c^{-1} to get real numbers.
9. If $T z=\frac{a z+b}{c z+d}$, find necessary and sufficient conditions that $T(\Gamma)=\Gamma$.

Solution: As before, T^{-1} will also preserve Γ if and only if T does, and therefore it will preserve symmetry with respect to Γ. In particular, 0 and ∞ will be sent to a symmetric pair. Let $a=T^{-1}(0)$, and note that a cannot be in Γ by our assumption. We can check (for example, using the calculation on page 51 of the book) that a 's inverse with respect to Γ is $a^{*}:=\frac{1}{\bar{a}}$. This means that T must be of the form

$$
T z=b \frac{z-a}{z-a^{*}}, b \in \mathbb{C}^{\times}
$$

If $a=0$ or ∞, then $T z=b z$ or $\frac{b}{z}$, and so $|b|=1$ is the only condition needed for $T(\Gamma)=\Gamma$. Otherwise, we can pull out an \bar{a} from the bottom to rewrite T in the form

$$
T z=c \frac{z-a}{\bar{a} z-1}
$$

Which c are allowed? We can find out by observing that

$$
\begin{aligned}
|T z|^{2} & =\frac{(z-a)(\bar{z}-\bar{a})}{(\bar{a} z-1)(a \bar{z}-1)} \\
& =|c|^{2} \frac{|a|^{2}+|z|^{2}-(\bar{a} z+\bar{z} a)}{|a|^{2}|z|^{2}+1-(\bar{a} z+\bar{z} a)}
\end{aligned}
$$

If $z \in \Gamma$, the right hand side reduces to $|c|^{2}$, meaning $T(\Gamma)=\Gamma$ if and only if $c \in \Gamma$. Thus, we can say that $T(\Gamma)=\Gamma$ if and only if

$$
T(z)=c \frac{z-a}{\bar{a} z-1}, c \in \Gamma, a \notin \Gamma
$$

with the usual convention if $a=\infty$.
10. Let $D=\{z:|z|<1\}$, and find all Möbius transformations T such that $T(D)=$ D.

Solution: By continuity, any such T satisfy $T(\Gamma)=\Gamma$ as well, so we need only check among the T described in previous problem. So let

$$
T z=c \frac{z-a}{\bar{a} z-1}, c \in \Gamma
$$

Since $T a=0 \in D$, we must have $a \in D$ as well. We claim this is the only condition necessary. To see this, we just need to check whether $|T z|^{2}<1$ for $z \in D$. By our earlier calculation, this is equivalent ${ }^{1}$ to asking whether

$$
|a|^{2}+|z|^{2}-(\bar{a} z+\bar{z} a)<|a|^{2}|z|^{2}+1-(\bar{a} z+\bar{z} a)
$$

or in other words, whether

$$
|a|^{2}+|z|^{2}<|a|^{2}|z|^{2}+1
$$

This is true whenever $|z|<1$, so we are done.

[^0]Page 4

[^0]: ${ }^{1}$ the denominator in that expression is never 0 if $\bar{a}, z \in D$

