6. Evaluate the following cross ratios:

(a) \((7 + i, 1, 0, \infty)\)

Solution: The formula for the cross ratio is

\[
(\omega_1, \omega_2, \omega_3, \omega_4) = \frac{\omega_1 - \omega_3 \omega_2 - \omega_4}{\omega_1 - \omega_4 \omega_2 - \omega_3}
\]

since putting \(\omega_2, \omega_3, \omega_4\) in the place of \(\omega_1\) has the desired properties. Since \(\omega_4 = \infty\) here, one can check that removing the terms involving \(\omega_4\) gives the correct images, and we have

\[
(7 + i, 1, 0, \infty) = \frac{(7 + i - 0)}{1 - 0} = 7 + i
\]

(b) \((2, 1 - i, 1, 1 + i)\)

Solution: This is even more straightforward:

\[
(2, 1 - i, 1, 1 + i) = \frac{1}{1 - i} \frac{-2i}{-i} = 1 + i
\]

(c) \((0, 1, i, -1)\)

Solution:

\[
(0, 1, i, -1) = \frac{-i}{1} \frac{2}{1 - i} = 1 - i
\]

(d) \((i - 1, \infty, 1 + i, 0)\)

Solution: By the same reasoning as in part a, we should remove the \(\omega_2\) terms here, yielding

\[
(i - 1, \infty, 1 + i, 0) = \frac{-2}{i - 1} = -(1 + i)
\]
7. If $Tz = \frac{az+b}{cz+d}$, find z_2, z_3, z_4 (in terms of a, b, c, d) such that $Tz = (z, z_2, z_3, z_4)$.

Solution: In other words, this is just solving

\[
Tz_2 = 1, Tz_3 = 0, Tz_4 = \infty.
\]

We’re assuming here that T is a Möbius transformation (otherwise the cross ratio might be impossible to define!), so we must have

\[
T^{-1}1 = z_2, T^{-1}0 = z_3, T^{-1}\infty = z_4.
\]

Luckily, T^{-1} isreadily computable in terms of a, b, c, d:

\[
T^{-1}z = \frac{dz - b}{-cz + a}.
\]

This shows that

\[
z_2 = \frac{d - b}{a - c}, z_3 = \frac{-b}{a}, z_4 = \frac{-d}{c}.
\]

8. If $Tz = \frac{az+b}{cz+d}$, show that $T(\mathbb{R}_\infty) = \mathbb{R}_\infty$ iff we can choose a, b, c, d to be real.

Solution: Again, we should assume T is invertible, since otherwise it is constant and $T(\mathbb{R}_\infty)$ will certainly not be \mathbb{R}_∞. The “if” direction is clear, so assume $T(\mathbb{R}_\infty) = \mathbb{R}_\infty$.

We want to show that we can write a, b, c, d as real multiples of a single element, so we look at their ratios. Plugging in 0 and ∞, we get that $\frac{a}{c}$ and $\frac{b}{d}$ are real as long as the denominators are nonzero. However, T is invertible, so $T^{-1}(\mathbb{R}_\infty) = \mathbb{R}_\infty$, and the same procedure shows that $\frac{d}{c}, \frac{b}{a}$ are real with the same caveats.

Notice also that if we compose with any other Möbius transformation preserving \mathbb{R}_∞, the resulting transformation S will still preserve \mathbb{R}_∞. Doing so with $z \mapsto \frac{1}{z}$, we get

\[
Sz = \frac{cz + d}{az + b}
\]

which must also preserve \mathbb{R}_∞. This means that (unless $a = d = 0$, which we will cover later) we can assume that $cd \neq 0$, since otherwise we can swap them with a and b, and these are guaranteed to be nonzero if c or d (respectively) is by the invertibility of T.

This being the case, the way forward is clear: $\frac{a}{c}$ and $\frac{d}{c}$ are already in \mathbb{R}, and so is $\frac{b}{c} = \frac{b}{d} \frac{d}{c}$. This is true in the only case we didn’t cover as well, because then $Tz = \frac{b}{cz}$, so $T(1)$ being real gives us what we want. Therefore, we can scale everything by c^{-1} to get real numbers.
9. If \(Tz = \frac{az + b}{cz + d} \), find necessary and sufficient conditions that \(T(\Gamma) = \Gamma \).

Solution: As before, \(T^{-1} \) will also preserve \(\Gamma \) if and only if \(T \) does, and therefore it will preserve symmetry with respect to \(\Gamma \). In particular, 0 and \(\infty \) will be sent to a symmetric pair. Let \(a = T^{-1}(0) \), and note that \(a \) cannot be in \(\Gamma \) by our assumption. We can check (for example, using the calculation on page 51 of the book) that \(a \)'s inverse with respect to \(\Gamma \) is \(a^* := \frac{1}{\bar{a}} \). This means that \(T \) must be of the form

\[
Tz = b\frac{z - a}{z - a^*}, b \in \mathbb{C}^\times.
\]

If \(a = 0 \) or \(\infty \), then \(Tz = bz \) or \(\frac{b}{z} \), and so \(|b| = 1 \) is the only condition needed for \(T(\Gamma) = \Gamma \). Otherwise, we can pull out an \(\bar{a} \) from the bottom to rewrite \(T \) in the form

\[
Tz = cz - a\frac{z - a^*}{\bar{a} - 1}.
\]

Which \(c \) are allowed? We can find out by observing that

\[
|Tz|^2 = \frac{(z - a)(\bar{z} - \bar{a})}{(\bar{z} - 1)(\bar{a}z - 1)}
\]

\[
= |c|^2 \frac{|a|^2 + |z|^2 - (\bar{a}z + \bar{z}a)}{|a|^2 |z|^2 + 1 - (\bar{a}z + \bar{z}a)}.
\]

If \(z \in \Gamma \), the right hand side reduces to \(|c|^2 \), meaning \(T(\Gamma) = \Gamma \) if and only if \(c \in \Gamma \). Thus, we can say that \(T(\Gamma) = \Gamma \) if and only if

\[
T(z) = c\frac{z - a}{\bar{a}z - 1}, c \in \Gamma, a \notin \Gamma
\]

with the usual convention if \(a = \infty \).

10. Let \(D = \{ z : |z| < 1 \} \), and find all Möbius transformations \(T \) such that \(T(D) = D \).

Solution: By continuity, any such \(T \) satisfy \(T(\Gamma) = \Gamma \) as well, so we need only check among the \(T \) described in previous problem. So let

\[
Tz = c\frac{z - a}{\bar{a}z - 1}, c \in \Gamma
\]

Since \(Ta = 0 \in D \), we must have \(a \in D \) as well. We claim this is the only condition necessary. To see this, we just need to check whether \(|Tz|^2 < 1 \) for \(z \in D \). By our earlier calculation, this is equivalent to asking whether

\[
|a|^2 + |z|^2 - (\bar{a}z + \bar{z}a) < |a|^2 |z|^2 + 1 - (\bar{a}z + \bar{z}a),
\]

or in other words, whether

\[
|a|^2 + |z|^2 < |a|^2 |z|^2 + 1.
\]

This is true whenever \(|z| < 1 \), so we are done.
the denominator in that expression is never 0 if $\bar{a}, z \in D$