
Math 220A HW 6 Solutions

Section 4.1

12. Let I(r) =

∫
γ

eiz

z
dz where γ : [0, π] → C is defined by γ(t) = reit. Show that

lim
r→∞

I(r) = 0.

Solution: We’ll use the bound |
∫
γ
f | ≤

∫
γ
|f |d|z|, for f(z) = eiz

z
. Since |γ|(s) =

V (γ; [0, s]) =
s∫
0

|reit|dt = rs,

|I(r)| ≤
∫
γ

|f |d|z|

=

π∫
0

|e
rieit

reit
|rdt

=

π∫
0

|er(i cos(t)−sin(t)|dt

=

π∫
0

e−r sin tdt,

and we are looking for a bound for this latter integral. If we could replace sin t with some
multiple of t, the integral would be easy to evaluate, so we would like e−r sin t ≤ e−rαt; ie,
αt ≤ sin t on [0, π] , α ∈ R>0. If we let g(t) := sin t− αt, we are looking for g(t) ≥ 0.

Observe first that g(0) = 0 for every positive α, and the derivative g′(t) = cos t − α
will at first be positive if α < 1. Since g(π) < 0, by continuity g will attain another
zero—cα, say—on [0, π]. This is not ideal, since the bound we want will not hold on
(cα, π]. Luckily, sin t is symmetric about π

2
in this interval, so

π∫
0

e−r sin tdt = 2

π
2∫

0

e−r sin tdt

meaning we only need the bound to hold on [0, π
2
]. In other words, we would like

g(π
2
) = 1 − π

2
α ≥ 0, and for there to be no other zeros of g on [0, π

2
]. In fact, the first

1



condition implies the second. To see this, note that g′(t) ≥ 0 on [0, arccosα] and is
negative on (arccosα, π

2
) 1. If there was another zero t0 inside the interval, g would have

to be increasing somewhere on (t0,
π
2
) (otherwise g(t0) would be > g(π

2
)). But then by

our discussion of the sign of g′, we would have g increasing on all of (0, t0), which would
force g(t0) > g(0). Thus, we can take any α with 0 < α ≤ 2

π
; we may as well take α = 2

π
.

Finally we have that

I(r) ≤ 2

π
2∫

0

e−r
2
π
tdt

= −2π

2r
(e−r − 1).

This certainly goes to 0 as r approaches ∞, so

lim
r→∞

I(r) = 0.

13. Find
∫
γ
z−

1
2dz where:

(a) γ is the upper half of the unit circle from +1 to −1:

Solution: Since we’re implicitly using the principal branch of the log, we should
parametrize γ as γ(t) = eit, t ∈ [0, π]. This allows us to calculate

∫
γ

z−
1
2dz =

π∫
0

e−i
t
2 ieitdt

=

π∫
0

iei
t
2dt

= 2(ei
π
2 − e0)

= 2(i− 1).

Since z−
1
2 is not actually defined at −1, we probably should be taking the limit of

the integral from 0 to s as s approaches π, but we will get the same result.

(b) γ is the lower half of the unit circle from +1 to −1.

Solution: Similarly, we find that

∫
γ

z−
1
2dz =

−π∫
0

e−i
t
2 ieitdt

= 2(e−i
π
2 − e0)

1we know arccosα will be in this interval because, for example, g′(π2 ) = −α < 0, so cos t = α has a
solution there.
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= 2(−i− 1)

19. Let γ(t) = 1 + eit for 0 ≤ t ≤ 2π and find
∫
γ
(z2 − 1)−1dz.

Solution: We rewrite 1
z2−1 as

1

z2 − 1
=

1

2

z + 1− (z − 1)

z2 − 1

=
1

2
(

1

z − 1
− 1

z + 1
)

in order to calculate (noting that log(2+eit) is defined on an open set containing [0, 2π])

∫
γ

1

z2 − 1
dz =

2π∫
0

i
eit

(2 + eit)eit
dt

=

2π∫
0

1

2
(

1

eit
− 1

2 + eit
)ieitdt

=

2π∫
0

1

2
(i− ieit

2 + eit
)dt

=
1

2
(it− log(2 + eit))

∣∣2π
0

=
1

2
(2πi− log(3) + log(3))

= πi.

20. Let γ(t) = 2eit for −π ≤ t ≤ π and find
∫
γ
(z2 − 1)−1dz.

Solution: Notice that Tz = z−1
z+1

preserves R∞, and therefore Tz is in R≤0 ∪ {∞} if
and only if z is real and −1 ≤ z ≤ 1. This means that away from that interval—and in
particular, on an open set containing γ—log z−1

z+1
is defined. However, we can deduce from

the calculations in the previous problem that 1
2

log z−1
z+1

is a primitive of f(z) := 1
z2−1 , so

the integral of f around the closed curve γ will be 0.
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Section 4.2

7. Use the results of this section to evaluate the following integrals:

(d) ∫
γ

log z

zn
dz, γ(t) = 1 +

1

2
eit, 0 ≤ t ≤ 2π and n ≥ 0.

Solution: Both log z and zn are analytic, and zn has no zeroes on B(1; 1
2

+ ε) for

small ε, so log z
zn

is analytic there. Thus, its integral around a closed curve is 0.

9. Evaluate the following integrals:

(a) ∫
γ

ez − e−z

zn
dz, where n is any positive integer and γ(t) = eit, 0 ≤ t ≤ 2π.

Solution: If f(z) = ez − e−z, then we know that∫
γ

f(z)

zn
dz =

2πi

(n− 1)!
f (n−1)(0).

Of course, f (n− 1)(z) = ez + (−1)n−1e−z, so we can write this as∫
γ

ez − e−z

zn
dz =

{
4πi

(n−1)! , n even

0, n odd

(e) ∫
γ

z
1
m

(z − 1)m
dz, where γ(t) = 1 +

1

2
eit, 0 ≤ t ≤ 2π

Solution: If m ≤ 0, then z
1
m

(z−1)m is analytic on B(1; 1
2
+ε), so its integral is 0 around

γ. For m positive, f(z) := z
1
m at least is analytic there, and we can again use that∫

γ

f(z)

(z − 1)m
dz =

2πi

(m− 1)!
fm−1(1).

We can also check that

f (m−1)(z) =
1

m
(

1

m
− 1) · · · ( 1

m
− (m− 2))z

1
m
−(m−1)

=
1

m
(
1−m
m

) · · · (1− (m− 2)m

m
)z

1
m
−(m−1)
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=

m−2∏
j=0

(1− jm)

mm−1 z
1
m
−(m−1)

(this works even for m = 1), and we arrive at

∫
γ

f(z)

(z − 1)m
dz =

2πi
m−2∏
j=0

(1− jm)

mm−1(m− 1)!
.

10. Evaluate

∫
γ

z2 + 1

z(z2 + 4)
dz, where γ(t) = reit, 0 ≤ t ≤ 2π, for all possible values of

r, 0 < r < 2, 2 < r <∞.

Solution: Assume first that 0 < r < 2; then f(z) := z2+1
z2+4

is analytic on an open ball

around 0 containing γ, so the integral is just 2πi · f(0) = iπ
2

.

Now suppose 2 < r < ∞. Then the function has 3 poles in any ball around 0 con-
taining γ, so we should use the partial fraction decomposition

z2 + 1

z(z2 + 4)
=

1

4z
+

3z

4(z2 + 4)

=
1

4z
+

3

8
(

1

z + 2i
+

1

z − 2i
)

to integrate term-by-term. Each of these terms is easy: since ±2i are both at distance
2 < r from 0, we can apply Proposition 2.6 to yield∫

γ

1

4z
+

3

8
(

1

z + 2i
+

1

z − 2i
)dz =

1

4

∫
γ

1

z
dz +

3

8
(

∫
γ

1

z + 2i
dz +

∫
γ

1

z − 2i
dz)

= (
1

4
+

3

8
+

3

8
)2πi

= 2πi.
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