Math 220A HW 6 Solutions

Section 4.1

12. Let $I(r)=\int_{\gamma} \frac{e^{i z}}{z} d z$ where $\gamma:[0, \pi] \rightarrow \mathbb{C}$ is defined by $\gamma(t)=r e^{i t}$. Show that $\lim _{r \rightarrow \infty} I(r)=0$.
Solution: We'll use the bound $\left|\int_{\gamma} f\right| \leq \int_{\gamma}|f| d|z|$, for $f(z)=\frac{e^{i z}}{z}$. Since $|\gamma|(s)=$ $V(\gamma ;[0, s])=\int_{0}^{s}\left|r e^{i t}\right| d t=r s$,

$$
\begin{aligned}
|I(r)| & \leq \int_{\gamma}|f| d|z| \\
& =\int_{0}^{\pi}\left|\frac{e^{r i e^{i t}}}{r e^{i t}}\right| r d t \\
& =\int_{0}^{\pi}\left|e^{r(i \cos (t)-\sin (t)}\right| d t \\
& =\int_{0}^{\pi} e^{-r \sin t} d t
\end{aligned}
$$

and we are looking for a bound for this latter integral. If we could replace $\sin t$ with some multiple of t, the integral would be easy to evaluate, so we would like $e^{-r \sin t} \leq e^{-r \alpha t}$; ie, $\alpha t \leq \sin t$ on $[0, \pi], \alpha \in \mathbb{R}_{>0}$. If we let $g(t):=\sin t-\alpha t$, we are looking for $g(t) \geq 0$.

Observe first that $g(0)=0$ for every positive α, and the derivative $g^{\prime}(t)=\cos t-\alpha$ will at first be positive if $\alpha<1$. Since $g(\pi)<0$, by continuity g will attain another zero- c_{α}, say - on $[0, \pi]$. This is not ideal, since the bound we want will not hold on $\left(c_{\alpha}, \pi\right]$. Luckily, $\sin t$ is symmetric about $\frac{\pi}{2}$ in this interval, so

$$
\int_{0}^{\pi} e^{-r \sin t} d t=2 \int_{0}^{\frac{\pi}{2}} e^{-r \sin t} d t
$$

meaning we only need the bound to hold on $\left[0, \frac{\pi}{2}\right]$. In other words, we would like $g\left(\frac{\pi}{2}\right)=1-\frac{\pi}{2} \alpha \geq 0$, and for there to be no other zeros of g on $\left[0, \frac{\pi}{2}\right]$. In fact, the first
condition implies the second. To see this, note that $g^{\prime}(t) \geq 0$ on $[0, \arccos \alpha]$ and is negative on $\left(\arccos \alpha, \frac{\pi}{2}\right)^{1}$. If there was another zero t_{0} inside the interval, g would have to be increasing somewhere on $\left(t_{0}, \frac{\pi}{2}\right)$ (otherwise $g\left(t_{0}\right)$ would be $>g\left(\frac{\pi}{2}\right)$). But then by our discussion of the sign of g^{\prime}, we would have g increasing on all of $\left(0, t_{0}\right)$, which would force $g\left(t_{0}\right)>g(0)$. Thus, we can take any α with $0<\alpha \leq \frac{2}{\pi}$; we may as well take $\alpha=\frac{2}{\pi}$. Finally we have that

$$
\begin{aligned}
I(r) & \leq 2 \int_{0}^{\frac{\pi}{2}} e^{-r \frac{2}{\pi} t} d t \\
& =-\frac{2 \pi}{2 r}\left(e^{-r}-1\right)
\end{aligned}
$$

This certainly goes to 0 as r approaches ∞, so

$$
\lim _{r \rightarrow \infty} I(r)=0
$$

13. Find $\int_{\gamma} z^{-\frac{1}{2}} d z$ where:
(a) γ is the upper half of the unit circle from +1 to -1 :

Solution: Since we're implicitly using the principal branch of the log, we should parametrize γ as $\gamma(t)=e^{i t}, t \in[0, \pi]$. This allows us to calculate

$$
\begin{aligned}
\int_{\gamma} z^{-\frac{1}{2}} d z & =\int_{0}^{\pi} e^{-i \frac{t}{2}} i e^{i t} d t \\
& =\int_{0}^{\pi} i e^{i \frac{t}{2}} d t \\
& =2\left(e^{i \frac{\pi}{2}}-e^{0}\right) \\
& =2(i-1)
\end{aligned}
$$

Since $z^{-\frac{1}{2}}$ is not actually defined at -1 , we probably should be taking the limit of the integral from 0 to s as s approaches π, but we will get the same result.
(b) γ is the lower half of the unit circle from +1 to -1 .

Solution: Similarly, we find that

$$
\begin{aligned}
\int_{\gamma} z^{-\frac{1}{2}} d z & =\int_{0}^{-\pi} e^{-i \frac{t}{2}} i e^{i t} d t \\
& =2\left(e^{-i \frac{\pi}{2}}-e^{0}\right)
\end{aligned}
$$

[^0]$$
=2(-i-1)
$$
19. Let $\gamma(t)=1+e^{i t}$ for $0 \leq t \leq 2 \pi$ and find $\int_{\gamma}\left(z^{2}-1\right)^{-1} d z$.

Solution: We rewrite $\frac{1}{z^{2}-1}$ as

$$
\begin{aligned}
\frac{1}{z^{2}-1} & =\frac{1}{2} \frac{z+1-(z-1)}{z^{2}-1} \\
& =\frac{1}{2}\left(\frac{1}{z-1}-\frac{1}{z+1}\right)
\end{aligned}
$$

in order to calculate (noting that $\log \left(2+e^{i t}\right)$ is defined on an open set containing $[0,2 \pi]$)

$$
\begin{aligned}
\int_{\gamma} \frac{1}{z^{2}-1} d z & =\int_{0}^{2 \pi} i \frac{e^{i t}}{\left(2+e^{i t}\right) e^{i t}} d t \\
& =\int_{0}^{2 \pi} \frac{1}{2}\left(\frac{1}{e^{i t}}-\frac{1}{2+e^{i t}}\right) i e^{i t} d t \\
& =\int_{0}^{2 \pi} \frac{1}{2}\left(i-\frac{i e^{i t}}{2+e^{i t}}\right) d t \\
& =\left.\frac{1}{2}\left(i t-\log \left(2+e^{i t}\right)\right)\right|_{0} ^{2 \pi} \\
& =\frac{1}{2}(2 \pi i-\log (3)+\log (3)) \\
& =\pi i
\end{aligned}
$$

20. Let $\gamma(t)=2 e^{i t}$ for $-\pi \leq t \leq \pi$ and find $\int_{\gamma}\left(z^{2}-1\right)^{-1} d z$.

Solution: Notice that $T z=\frac{z-1}{z+1}$ preserves \mathbb{R}_{∞}, and therefore $T z$ is in $\mathbb{R}_{\leq 0} \cup\{\infty\}$ if and only if z is real and $-1 \leq z \leq 1$. This means that away from that interval-and in particular, on an open set containing $\gamma-\log \frac{z-1}{z+1}$ is defined. However, we can deduce from the calculations in the previous problem that $\frac{1}{2} \log \frac{z-1}{z+1}$ is a primitive of $f(z):=\frac{1}{z^{2}-1}$, so the integral of f around the closed curve γ will be 0 .

Section 4.2
7. Use the results of this section to evaluate the following integrals:
(d)

$$
\int_{\gamma} \frac{\log z}{z^{n}} d z, \gamma(t)=1+\frac{1}{2} e^{i t}, 0 \leq t \leq 2 \pi \text { and } n \geq 0 .
$$

Solution: Both $\log z$ and z^{n} are analytic, and z^{n} has no zeroes on $B\left(1 ; \frac{1}{2}+\epsilon\right)$ for small ϵ, so $\frac{\log z}{z^{n}}$ is analytic there. Thus, its integral around a closed curve is 0 .

9. Evaluate the following integrals:

(a)

$$
\int_{\gamma} \frac{e^{z}-e^{-z}}{z^{n}} d z, \text { where } n \text { is any positive integer and } \gamma(t)=e^{i t}, 0 \leq t \leq 2 \pi
$$

Solution: If $f(z)=e^{z}-e^{-z}$, then we know that

$$
\int_{\gamma} \frac{f(z)}{z^{n}} d z=\frac{2 \pi i}{(n-1)!} f^{(n-1)}(0)
$$

Of course, $\left.f^{(} n-1\right)(z)=e^{z}+(-1)^{n-1} e^{-z}$, so we can write this as

$$
\int_{\gamma} \frac{e^{z}-e^{-z}}{z^{n}} d z=\left\{\begin{array}{l}
\frac{4 \pi i}{(n-1)!}, n \text { even } \\
0, n \text { odd }
\end{array}\right.
$$

(e)

$$
\int_{\gamma} \frac{z^{\frac{1}{m}}}{(z-1)^{m}} d z, \text { where } \gamma(t)=1+\frac{1}{2} e^{i t}, 0 \leq t \leq 2 \pi
$$

Solution: If $m \leq 0$, then $\frac{z^{\frac{1}{m}}}{(z-1)^{m}}$ is analytic on $B\left(1 ; \frac{1}{2}+\epsilon\right)$, so its integral is 0 around γ. For m positive, $f(z):=z^{\frac{1}{m}}$ at least is analytic there, and we can again use that

$$
\int_{\gamma} \frac{f(z)}{(z-1)^{m}} d z=\frac{2 \pi i}{(m-1)!} f^{m-1}(1)
$$

We can also check that

$$
\begin{aligned}
f^{(m-1)}(z) & =\frac{1}{m}\left(\frac{1}{m}-1\right) \cdots\left(\frac{1}{m}-(m-2)\right) z^{\frac{1}{m}-(m-1)} \\
& =\frac{1}{m}\left(\frac{1-m}{m}\right) \cdots\left(\frac{1-(m-2) m}{m}\right) z^{\frac{1}{m}-(m-1)}
\end{aligned}
$$

$$
=\frac{\prod_{j=0}^{m-2}(1-j m)}{m^{m-1}} z^{\frac{1}{m}-(m-1)}
$$

(this works even for $m=1$), and we arrive at

$$
\int_{\gamma} \frac{f(z)}{(z-1)^{m}} d z=\frac{2 \pi i \prod_{j=0}^{m-2}(1-j m)}{m^{m-1}(m-1)!} .
$$

10. Evaluate $\int_{\gamma} \frac{z^{2}+1}{z\left(z^{2}+4\right)} d z$, where $\gamma(t)=r e^{i t}, 0 \leq t \leq 2 \pi$, for all possible values of $r, 0<r<2,2<r<\infty$.

Solution: Assume first that $0<r<2$; then $f(z):=\frac{z^{2}+1}{z^{2}+4}$ is analytic on an open ball around 0 containing γ, so the integral is just $2 \pi i \cdot f(0)=\frac{i \pi}{2}$.

Now suppose $2<r<\infty$. Then the function has 3 poles in any ball around 0 containing γ, so we should use the partial fraction decomposition

$$
\begin{aligned}
\frac{z^{2}+1}{z\left(z^{2}+4\right)} & =\frac{1}{4 z}+\frac{3 z}{4\left(z^{2}+4\right)} \\
& =\frac{1}{4 z}+\frac{3}{8}\left(\frac{1}{z+2 i}+\frac{1}{z-2 i}\right)
\end{aligned}
$$

to integrate term-by-term. Each of these terms is easy: since $\pm 2 i$ are both at distance $2<r$ from 0 , we can apply Proposition 2.6 to yield

$$
\begin{aligned}
\int_{\gamma} \frac{1}{4 z}+\frac{3}{8}\left(\frac{1}{z+2 i}+\frac{1}{z-2 i}\right) d z & =\frac{1}{4} \int_{\gamma} \frac{1}{z} d z+\frac{3}{8}\left(\int_{\gamma} \frac{1}{z+2 i} d z+\int_{\gamma} \frac{1}{z-2 i} d z\right) \\
& =\left(\frac{1}{4}+\frac{3}{8}+\frac{3}{8}\right) 2 \pi i \\
& =2 \pi i .
\end{aligned}
$$

[^0]: ${ }^{1}$ we know $\arccos \alpha$ will be in this interval because, for example, $g^{\prime}\left(\frac{\pi}{2}\right)=-\alpha<0$, so $\cos t=\alpha$ has a solution there.

