Math 220A HW 6 Solutions

Section 4.1

12. Let \(I(r) = \int_{\gamma} \frac{e^{iz}}{z} \, dz \) where \(\gamma : [0, \pi] \to \mathbb{C} \) is defined by \(\gamma(t) = re^{it} \). Show that
\[
\lim_{r \to \infty} I(r) = 0.
\]

Solution: We’ll use the bound \(|\int_{\gamma} f| \leq \int_{\gamma} |f||dz|\), for \(f(z) = \frac{e^{iz}}{z} \). Since \(|\gamma(s) = V(\gamma; [0, s]) = \int_{0}^{s} |re^{it}| \, dt = rs|,

\[
|I(r)| \leq \int_{\gamma} |f||dz|
= \int_{0}^{\pi} \left| \frac{e^{rie^{it}}}{re^{it}} \right| r \, dt
= \int_{0}^{\pi} |e^{ri(cos(t) - \sin(t))}| \, dt
= \int_{0}^{\pi} e^{-r \sin t} \, dt,
\]

and we are looking for a bound for this latter integral. If we could replace \(\sin t \) with some multiple of \(t \), the integral would be easy to evaluate, so we would like \(e^{-r \sin t} \leq e^{-r \alpha t} \); ie, \(\alpha t \leq \sin t \) on \([0, \pi] \), \(\alpha \in \mathbb{R}_{>0} \). If we let \(g(t) := \sin t - \alpha t \), we are looking for \(g(t) \geq 0 \).

Observe first that \(g(0) = 0 \) for every positive \(\alpha \), and the derivative \(g'(t) = \cos t - \alpha \) will at first be positive if \(\alpha < 1 \). Since \(g(\pi) < 0 \), by continuity \(g \) will attain another zero—\(c_\alpha \), say—on \([0, \pi] \). This is not ideal, since the bound we want will not hold on \((c_\alpha, \pi]\). Luckily, \(\sin t \) is symmetric about \(\frac{\pi}{2} \) in this interval, so

\[
\int_{0}^{\pi} e^{-r \sin t} \, dt = 2 \int_{0}^{\pi/2} e^{-r \sin t} \, dt
\]

meaning we only need the bound to hold on \([0, \frac{\pi}{2}] \). In other words, we would like \(g(\frac{\pi}{2}) = 1 - \frac{\pi}{2} \alpha \geq 0 \), and for there to be no other zeros of \(g \) on \([0, \frac{\pi}{2}] \). In fact, the first
condition implies the second. To see this, note that $g'(t) \geq 0$ on $[0, \arccos \alpha]$ and is negative on $(\arccos \alpha, \pi/2)$. If there was another zero t_0 inside the interval, g would have to be increasing somewhere on $(t_0, \pi/2)$ (otherwise $g(t_0)$ would be $> g(\pi/2)$). But then by our discussion of the sign of g', we would have g increasing on all of $(0, t_0)$, which would force $g(t_0) > g(0)$. Thus, we can take any α with $0 < \alpha \leq \pi/2$; we may as well take $\alpha = \pi/2$.

Finally we have that

$$I(r) \leq 2 \int_0^{\pi/2} e^{-r \frac{2}{\pi} t} dt$$

$$= -\frac{2\pi}{2r} (e^{-r} - 1).$$

This certainly goes to 0 as r approaches ∞, so

$$\lim_{r \to \infty} I(r) = 0.$$

13. Find $\int_{\gamma} z^{-\frac{1}{2}} dz$ where:

(a) γ is the upper half of the unit circle from $+1$ to -1:

Solution: Since we’re implicitly using the principal branch of the log, we should parametrize γ as $\gamma(t) = e^{it}, t \in [0, \pi]$. This allows us to calculate

$$\int_{\gamma} z^{-\frac{1}{2}} dz = \int_0^\pi e^{-i\frac{1}{2}i}e^{it} dt$$

$$= \int_0^\pi ie^{i\frac{1}{2}t} dt$$

$$= 2(e^{\pi i/2} - e^0)$$

$$= 2(i - 1).$$

Since $z^{-\frac{1}{2}}$ is not actually defined at -1, we probably should be taking the limit of the integral from 0 to s as s approaches π, but we will get the same result.

(b) γ is the lower half of the unit circle from $+1$ to -1.

Solution: Similarly, we find that

$$\int_{\gamma} z^{-\frac{1}{2}} dz = \int_0^{-\pi} e^{-i\frac{1}{2}i}e^{it} dt$$

$$= 2(e^{-\pi i/2} - e^0)$$

1 we know $\arccos \alpha$ will be in this interval because, for example, $g'(\pi/2) = -\alpha < 0$, so $\cos t = \alpha$ has a solution there.
19. Let $\gamma(t) = 1 + e^{it}$ for $0 \leq t \leq 2\pi$ and find $\int_\gamma (z^2 - 1)^{-1}dz$.

Solution: We rewrite $\frac{1}{z^2 - 1}$ as

$$\frac{1}{z^2 - 1} = \frac{1}{2} \left(\frac{1}{z - 1} - \frac{1}{z + 1} \right)$$

in order to calculate (noting that $\log(2 + e^{it})$ is defined on an open set containing $[0, 2\pi]$)

$$\int_\gamma \frac{1}{z^2 - 1} \, dz = \int_0^{2\pi} \frac{i}{2} \left(\frac{1}{e^{it}} - \frac{1}{2 + e^{it}} \right) e^{it} \, dt$$

$$= \int_0^{2\pi} \left(\frac{i}{2} \left(1 - \frac{1}{2 + e^{it}} \right) \right) dt$$

$$= \int_0^{2\pi} \frac{i}{2} (e^{it} - 2) \, dt$$

$$= \frac{i}{2} \left(i t - \log(2 + e^{it}) \right) \bigg|_0^{2\pi}$$

$$= \frac{1}{2} (2\pi i - \log(3) + \log(3))$$

$$= \pi i.$$

20. Let $\gamma(t) = 2e^{it}$ for $-\pi \leq t \leq \pi$ and find $\int_\gamma (z^2 - 1)^{-1}dz$.

Solution: Notice that $Tz = \frac{z - 1}{z + 1}$ preserves \mathbb{R}_∞, and therefore Tz is in $\mathbb{R}_{\leq 0} \cup \{\infty\}$ if and only if z is real and $-1 \leq z \leq 1$. This means that away from that interval—and in particular, on an open set containing γ—$\log \frac{z - 1}{z + 1}$ is defined. However, we can deduce from the calculations in the previous problem that $\frac{1}{2} \log \frac{z - 1}{z + 1}$ is a primitive of $f(z) := \frac{1}{z^2 - 1}$, so the integral of f around the closed curve γ will be 0.
Section 4.2

7. Use the results of this section to evaluate the following integrals:

(d) \[\int_{\gamma} \frac{\log z}{z^n} dz, \quad \gamma(t) = 1 + \frac{1}{2} e^{it}, \quad 0 \leq t \leq 2\pi \text{ and } n \geq 0. \]

Solution: Both \(\log z \) and \(z^n \) are analytic, and \(z^n \) has no zeroes on \(B(1; \frac{1}{2} + \epsilon) \) for small \(\epsilon \), so \(\frac{\log z}{z^n} \) is analytic there. Thus, its integral around a closed curve is 0.

9. Evaluate the following integrals:

(a) \[\int_{\gamma} \frac{e^z - e^{-z}}{z^n} dz, \quad \text{where } n \text{ is any positive integer and } \gamma(t) = e^{it}, \quad 0 \leq t \leq 2\pi. \]

Solution: If \(f(z) = e^z - e^{-z} \), then we know that

\[\int_{\gamma} \frac{f(z)}{z^n} dz = \frac{2\pi i}{(n-1)!} f^{(n-1)}(0). \]

Of course, \(f^{(n-1)}(z) = e^z + (-1)^{n-1} e^{-z} \), so we can write this as

\[\int_{\gamma} \frac{e^z - e^{-z}}{z^n} dz = \begin{cases} 4\pi i \frac{1}{(n-1)!}, & n \text{ even} \\ 0, & n \text{ odd} \end{cases} \]

(e) \[\int_{\gamma} \frac{z^{\frac{1}{m}}}{(z-1)^m} dz, \quad \text{where } \gamma(t) = 1 + \frac{1}{2} e^{it}, \quad 0 \leq t \leq 2\pi \]

Solution: If \(m \leq 0 \), then \(\frac{z^{\frac{1}{m}}}{(z-1)^m} \) is analytic on \(B(1; \frac{1}{2} + \epsilon) \), so its integral is 0 around \(\gamma \). For \(m \) positive, \(f(z) := z^{\frac{1}{m}} \) at least is analytic there, and we can again use that

\[\int_{\gamma} \frac{f(z)}{(z-1)^m} dz = \frac{2\pi i}{(m-1)!} f^{m-1}(1). \]

We can also check that

\[f^{(m-1)}(z) = \frac{1}{m} \left(\frac{1}{m} - 1 \right) \cdots \left(\frac{1}{m} - (m-2) \right) z^{\frac{1}{m}-(m-1)} \]
\[= \frac{1}{m} \left(\frac{1-m}{m} \right) \cdots \left(\frac{1-(m-2)m}{m} \right) z^{\frac{1}{m}-(m-1)} \]
\[\prod_{j=0}^{m-2} \frac{1 - jm}{z^{m-1}} \]

(this works even for \(m = 1 \)), and we arrive at

\[\int_{\gamma} \frac{f(z)}{(z-1)^m} \, dz = \frac{2\pi i \prod_{j=0}^{m-2} (1 - jm)}{m^{m-1}(m-1)!}. \]

10. Evaluate \(\int_{\gamma} \frac{z^2 + 1}{z(z^2 + 4)} \, dz \), where \(\gamma(t) = re^{it}, 0 \leq t \leq 2\pi \), for all possible values of \(r \), \(0 < r < 2 \), \(2 < r < \infty \).

Solution: Assume first that \(0 < r < 2 \); then \(f(z) := \frac{z^2 + 1}{z^2 + 4} \) is analytic on an open ball around 0 containing \(\gamma \), so the integral is just \(2\pi i \cdot f(0) = \frac{\pi i}{2} \).

Now suppose \(2 < r < \infty \). Then the function has 3 poles in any ball around 0 containing \(\gamma \), so we should use the partial fraction decomposition

\[\frac{z^2 + 1}{z(z^2 + 4)} = \frac{1}{4z} + \frac{3z}{4(z^2 + 4)} \]

\[= \frac{1}{4z} + \frac{3}{8} \left(\frac{1}{z + 2i} + \frac{1}{z - 2i} \right) \]

to integrate term-by-term. Each of these terms is easy: since \(\pm 2i \) are both distance 2 from 0, we can apply Proposition 2.6 to yield

\[\int_{\gamma} \frac{1}{4z} + \frac{3}{8} \left(\frac{1}{z + 2i} + \frac{1}{z - 2i} \right) \, dz = \frac{1}{4} \int_{\gamma} \frac{1}{z} \, dz + \frac{3}{8} \left(\int_{\gamma} \frac{1}{z + 2i} \, dz + \int_{\gamma} \frac{1}{z - 2i} \, dz \right) \]

\[= \left(\frac{1}{4} + \frac{3}{8} + \frac{3}{8} \right) 2\pi i \]

\[= 2\pi i. \]