Math 220A HW 6 Solutions

Section 4.1

12. Let $I(r) = \int_{\gamma} \frac{e^{iz}}{z} dz$ where $\gamma : [0, \pi] \to \mathbb{C}$ is defined by $\gamma(t) = re^{it}$. Show that $\lim_{r \to \infty} I(r) = 0$.

Solution: We'll use the bound $|\int_{\gamma} f| \leq \int_{\gamma} |f| d|z|$, for $f(z) = \frac{e^{iz}}{z}$. Since $|\gamma|(s) = V(\gamma; [0, s]) = \int_{0}^{s} |re^{it}| dt = rs$,

$$\begin{split} |I(r)| &\leq \int_{\gamma} |f| d|z| \\ &= \int_{0}^{\pi} |\frac{e^{rie^{it}}}{re^{it}}| r dt \\ &= \int_{0}^{\pi} |e^{r(i\cos(t) - \sin(t))}| dt \\ &= \int_{0}^{\pi} e^{-r\sin t} dt, \end{split}$$

and we are looking for a bound for this latter integral. If we could replace $\sin t$ with some multiple of t, the integral would be easy to evaluate, so we would like $e^{-r \sin t} \leq e^{-r\alpha t}$; ie, $\alpha t \leq \sin t$ on $[0, \pi]$, $\alpha \in \mathbb{R}_{>0}$. If we let $g(t) := \sin t - \alpha t$, we are looking for $g(t) \geq 0$.

Observe first that g(0) = 0 for every positive α , and the derivative $g'(t) = \cos t - \alpha$ will at first be positive if $\alpha < 1$. Since $g(\pi) < 0$, by continuity g will attain another zero— c_{α} , say—on $[0, \pi]$. This is not ideal, since the bound we want will not hold on $(c_{\alpha}, \pi]$. Luckily, sin t is symmetric about $\frac{\pi}{2}$ in this interval, so

$$\int_{0}^{\pi} e^{-r\sin t} dt = 2 \int_{0}^{\frac{\pi}{2}} e^{-r\sin t} dt$$

meaning we only need the bound to hold on $[0, \frac{\pi}{2}]$. In other words, we would like $g(\frac{\pi}{2}) = 1 - \frac{\pi}{2}\alpha \ge 0$, and for there to be no other zeros of g on $[0, \frac{\pi}{2}]$. In fact, the first

condition implies the second. To see this, note that $g'(t) \ge 0$ on $[0, \arccos \alpha]$ and is negative on $(\arccos \alpha, \frac{\pi}{2})^{-1}$. If there was another zero t_0 inside the interval, g would have to be increasing somewhere on $(t_0, \frac{\pi}{2})$ (otherwise $g(t_0)$ would be $> g(\frac{\pi}{2})$). But then by our discussion of the sign of g', we would have g increasing on all of $(0, t_0)$, which would force $g(t_0) > g(0)$. Thus, we can take any α with $0 < \alpha \le \frac{2}{\pi}$; we may as well take $\alpha = \frac{2}{\pi}$. Finally we have that

$$I(r) \le 2 \int_{0}^{\frac{\pi}{2}} e^{-r\frac{2}{\pi}t} dt$$
$$= -\frac{2\pi}{2r} (e^{-r} - 1).$$

This certainly goes to 0 as r approaches ∞ , so

$$\lim_{r \to \infty} I(r) = 0.$$

13. Find $\int_{\gamma} z^{-\frac{1}{2}} dz$ where:

(a) γ is the upper half of the unit circle from +1 to -1:

Solution: Since we're implicitly using the principal branch of the log, we should parametrize γ as $\gamma(t) = e^{it}, t \in [0, \pi]$. This allows us to calculate

$$\int_{\gamma} z^{-\frac{1}{2}} dz = \int_{0}^{\pi} e^{-i\frac{t}{2}} i e^{it} dt$$
$$= \int_{0}^{\pi} i e^{i\frac{t}{2}} dt$$
$$= 2(e^{i\frac{\pi}{2}} - e^{0})$$
$$= 2(i-1).$$

Since $z^{-\frac{1}{2}}$ is not actually defined at -1, we probably should be taking the limit of the integral from 0 to s as s approaches π , but we will get the same result.

(b) γ is the lower half of the unit circle from +1 to -1.

Solution: Similarly, we find that

$$\int_{\gamma} z^{-\frac{1}{2}} dz = \int_{0}^{-\pi} e^{-i\frac{t}{2}} i e^{it} dt$$
$$= 2(e^{-i\frac{\pi}{2}} - e^{0})$$

¹we know $\arccos \alpha$ will be in this interval because, for example, $g'(\frac{\pi}{2}) = -\alpha < 0$, so $\cos t = \alpha$ has a solution there.

$$= 2(-i-1)$$

19. Let $\gamma(t) = 1 + e^{it}$ for $0 \le t \le 2\pi$ and find $\int_{\gamma} (z^2 - 1)^{-1} dz$.

Solution: We rewrite $\frac{1}{z^2-1}$ as

$$\frac{1}{z^2 - 1} = \frac{1}{2} \frac{z + 1 - (z - 1)}{z^2 - 1}$$
$$= \frac{1}{2} \left(\frac{1}{z - 1} - \frac{1}{z + 1}\right)$$

in order to calculate (noting that $\log(2+e^{it})$ is defined on an open set containing $[0, 2\pi]$)

$$\int_{\gamma} \frac{1}{z^2 - 1} dz = \int_{0}^{2\pi} i \frac{e^{it}}{(2 + e^{it})e^{it}} dt$$
$$= \int_{0}^{2\pi} \frac{1}{2} (\frac{1}{e^{it}} - \frac{1}{2 + e^{it}}) i e^{it} dt$$
$$= \int_{0}^{2\pi} \frac{1}{2} (i - \frac{ie^{it}}{2 + e^{it}}) dt$$
$$= \frac{1}{2} (it - \log(2 + e^{it})) \Big|_{0}^{2\pi}$$
$$= \frac{1}{2} (2\pi i - \log(3) + \log(3))$$
$$= \pi i.$$

20. Let $\gamma(t) = 2e^{it}$ for $-\pi \le t \le \pi$ and find $\int_{\gamma} (z^2 - 1)^{-1} dz$.

Solution: Notice that $Tz = \frac{z-1}{z+1}$ preserves \mathbb{R}_{∞} , and therefore Tz is in $\mathbb{R}_{\leq 0} \cup \{\infty\}$ if and only if z is real and $-1 \leq z \leq 1$. This means that away from that interval—and in particular, on an open set containing γ —log $\frac{z-1}{z+1}$ is defined. However, we can deduce from the calculations in the previous problem that $\frac{1}{2} \log \frac{z-1}{z+1}$ is a primitive of $f(z) := \frac{1}{z^2-1}$, so the integral of f around the closed curve γ will be 0.

<u>Section 4.2</u>

7. Use the results of this section to evaluate the following integrals: (d)

$$\int_{\gamma} \frac{\log z}{z^n} dz, \gamma(t) = 1 + \frac{1}{2} e^{it}, 0 \le t \le 2\pi \text{ and } n \ge 0.$$

Solution: Both $\log z$ and z^n are analytic, and z^n has no zeroes on $B(1; \frac{1}{2} + \epsilon)$ for small ϵ , so $\frac{\log z}{z^n}$ is analytic there. Thus, its integral around a closed curve is 0.

- 9. Evaluate the following integrals:
 - (a)

$$\int_{\gamma} \frac{e^z - e^{-z}}{z^n} dz, \text{ where } n \text{ is any positive integer and } \gamma(t) = e^{it}, 0 \le t \le 2\pi.$$

Solution: If $f(z) = e^z - e^{-z}$, then we know that

$$\int_{\gamma} \frac{f(z)}{z^n} dz = \frac{2\pi i}{(n-1)!} f^{(n-1)}(0).$$

Of course, $f(n-1)(z) = e^{z} + (-1)^{n-1}e^{-z}$, so we can write this as

$$\int_{\gamma} \frac{e^z - e^{-z}}{z^n} dz = \begin{cases} \frac{4\pi i}{(n-1)!}, n \text{ even} \\ 0, n \text{ odd} \end{cases}$$

(e)

$$\int_{\gamma} \frac{z^{\frac{1}{m}}}{(z-1)^m} dz, \text{ where } \gamma(t) = 1 + \frac{1}{2} e^{it}, 0 \le t \le 2\pi$$

Solution: If $m \leq 0$, then $\frac{z^{\frac{1}{m}}}{(z-1)^m}$ is analytic on $B(1; \frac{1}{2}+\epsilon)$, so its integral is 0 around γ . For m positive, $f(z) := z^{\frac{1}{m}}$ at least is analytic there, and we can again use that

$$\int_{\gamma} \frac{f(z)}{(z-1)^m} dz = \frac{2\pi i}{(m-1)!} f^{m-1}(1).$$

We can also check that

$$f^{(m-1)}(z) = \frac{1}{m} (\frac{1}{m} - 1) \cdots (\frac{1}{m} - (m-2)) z^{\frac{1}{m} - (m-1)}$$
$$= \frac{1}{m} (\frac{1 - m}{m}) \cdots (\frac{1 - (m-2)m}{m}) z^{\frac{1}{m} - (m-1)}$$

$$=\frac{\prod_{j=0}^{m-2}(1-jm)}{m^{m-1}}z^{\frac{1}{m}-(m-1)}$$

(this works even for m = 1), and we arrive at

$$\int_{\gamma} \frac{f(z)}{(z-1)^m} dz = \frac{2\pi i \prod_{j=0}^{m-2} (1-jm)}{m^{m-1}(m-1)!}.$$

10. Evaluate $\int \frac{z^2+1}{z(z^2+4)} dz$, where $\gamma(t) = re^{it}, 0 \le t \le 2\pi$, for all possible values of $r, 0 < r < 2, 2 < r < \infty$.

Solution: Assume first that 0 < r < 2; then $f(z) := \frac{z^2+1}{z^2+4}$ is analytic on an open ball around 0 containing γ , so the integral is just $2\pi i \cdot f(0) = \frac{i\pi}{2}$.

Now suppose $2 < r < \infty$. Then the function has 3 poles in any ball around 0 containing γ , so we should use the partial fraction decomposition

$$\frac{z^2 + 1}{z(z^2 + 4)} = \frac{1}{4z} + \frac{3z}{4(z^2 + 4)}$$
$$= \frac{1}{4z} + \frac{3}{8}(\frac{1}{z + 2i} + \frac{1}{z - 2i})$$

to integrate term-by-term. Each of these terms is easy: since $\pm 2i$ are both at distance 2 < r from 0, we can apply Proposition 2.6 to yield

$$\int_{\gamma} \frac{1}{4z} + \frac{3}{8} \left(\frac{1}{z+2i} + \frac{1}{z-2i}\right) dz = \frac{1}{4} \int_{\gamma} \frac{1}{z} dz + \frac{3}{8} \left(\int_{\gamma} \frac{1}{z+2i} dz + \int_{\gamma} \frac{1}{z-2i} dz\right)$$
$$= \left(\frac{1}{4} + \frac{3}{8} + \frac{3}{8}\right) 2\pi i$$
$$= 2\pi i.$$