
Math 220A HW 6 Solutions

Section 4.3

1. Let f be an entire function and suppose there is a constant M , and R > 0,
and an integer n ≥ 1 such that |f(z)| ≤ M |z|n for |z| > R. Sow that f is a
polynomial of degree ≤ n.

Solution: By Liouville’s theorem (which applies since f , being continuous, is bounded
on the compact set |z| ≤ R as well), this is actually true for n = 0 as well. This suggests
we might be able to proceed inductively. So suppose the statement is true for n ≥ 0. f
is entire, so in particular it has a derivative at 0, meaning the function

F (z) =

{
f(z)−f(0)

z
, z 6= 0

f ′(0), z = 0

is well defined and continuous everywhere. Since f is entire, it has a power series
expansion about 0 that converges everywhere, which gives an expansion for F (z) that
also converges everywhere; therefore, F is entire. Now we see that if |f(z)| ≤ M |z|n+1

for |z| > R, then we can take |z| > R, which forces

|F (z)| ≤ |f(z)|+ |f(0)|
|z|

≤M |z|n +
|f(0)|
R

.

Thus, if we instead take |z| > max(R, 1, |f(0)|
R

), we will have |F (z)| ≤ (M + 1)|z|n. As a
result, F is a polynomial of degree ≤ n, so away from 0 f is a polynomial of degree at
most n+ 1. Of course, by continuity, this means f ’s value at 0 comes from the polyno-
mial as well, and we are done.

Alternate Solution: We can also use the same method of proof as that of Liouville’s
theorem, by showing f (n+1)(z) = 0 for all z. To this end, if we take r sufficiently large
(ie, much larger than both R and |z|), then for all w on the circle γ(r, z) of radius r
around z, we will have |f(w)| ≤ M |w|n ≤ M(r + |z|)n ≤ M(2r)n. Now we can apply
Corollary 2.13 to find that

|f (n+1)(z)| = (n+ 1)!

2π
|
∫

γ(r,z)

f(w)

(w − z)n+2
dw|

1



≤ 2πr
(n+ 1)!

2π

M2nrn

rn+2

=
2n(n+ 1)!

r
.

This is true for all large enough r, so f (n+1)(z) = 0 for all z. It is easy to check (for
example, by looking at f ’s power series expansion), that this forces f to be a polynomial
of degree ≤ n.

3. Find all entire functions f such that f(x) = ex for x ∈ R.

Solution: Let f be such a function. Then f(x) − ex is an entire function that is zero
on R. Since R contains a limit point (it’s even closed), we conclude that it is zero
everywhere, and f(z) = ez is the only such function.

6. Let G be a region and suppose that f : G→ C is analytic and a ∈ G such that
|f(a)| ≤ |f(z)| for all z ∈ G. Show that either f(a) = 0 or a is constant.

Solution: If f(a) 6= 0, then 1
f

is defined and analytic on G. Observing that | 1
f(z)
| is

bounded above by | 1
f(a)
|, we can use the maximum modulus principal to say that 1

f
is

constant. It is also nonzero, since f is, so f is also constant.

8. Let G be a region and let f and g be analytic functions on G such that
f(z)g(z) = 0 for all z in G. Show that either f ≡ 0 or g ≡ 0.

Solution: Suppose f 6≡ 0, so there is some a ∈ G with f(a) 6= 0. By continuity, we can
also find an open ball B ⊂ G around a such f(z) 6= 0 for a 6= 0. Our initial assumption
then shows that g must be zero on B. B has many limit points in G, so we must have
g ≡ 0.

9. Let U : C → R be a harmonic function such thatU(z) ≥ 0 for all z ∈ C; prove
that U is constant.

Solution: Since U is harmonic on C, we can find a harmonic conjugate V : C → R.
Let f be the resulting analytic function, and let g(z) = e−f(z). Then

|g(z)| = |e−u(z)|
≤ e0

= 1,

and g is constant by Liouville’s theorem. Thus f , and consequently U , is constant.
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10. Show that if f and g are analytic functions on a region G such that f̄ g is
analytic then either f is constant or g ≡ 0.

Solution: If g 6≡ 0, we claim that it is enough to show f̄ is analytic on a connected
open subset U of G. This is true because then Re f = f+f̄

2
and Im f = f−f̄

2i
will also be

analytic on U . We have already seen in an earlier homework that this can only happen
if they are both constant—that is, if f is constant. But then f agrees with a constant
function on an open subset of G, so as in problem 6 it must be constant on all of G.

To check that f̄ is analytic, let a ∈ G be such that g(a) 6= 0. As before, this means that

we can take U to be an open ball around a contained in G, as f̄ = f̄g
g

(which makes

sense because g is nonzero on U) is the quotient of two analytic functions on U .

Section 4.4

11. Fix w = reiθ 6= 0 and let γ be a rectifiable path in C− {0} from 1 to w. Show
that there is an integer k such that

∫
γ
z−1dz = log r + iθ + 2πik.

Solution: Choose a branch of the logarithm defined at both 1 and w. For instance, if
w /∈ R<0 we could take the principal branch, while if w ∈ R<0 we could take the branch
cut at R≤0i instead by setting logReiτ = logR + iτ,−π

2
< τ < 3π

2
. At any rate, we can

find a region containing 1 and w such that our branch log z is defined. Let γ′ be any
rectifiable path from 1 to w in this region that does not go through 0. Now we have a
primitive for z−1 around γ′, so∫

γ′
z−1dz = logw − log 1

= log r + i(θ′) + 2πin

for some n, θ′ depending on what branch we took (where reiθ
′

= w). Of course, θ′ =
θ + 2πm for some m. However, we also know that

2πi` :=

∫
γ−γ′

z−1dz

is just the winding number of the closed curve γ − γ′ around 0, and we see that∫
γ

z−1dz =

∫
γ′
z−1dz +

∫
γ−γ′

z−1dz

= log r + iθ + 2πim+ 2πin+ 2πi`

:= log r + iθ + 2πik.
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