Math 220A HW 6 Solutions

Section 4.3

1. Let f be an entire function and suppose there is a constant M, and R > 0,
and an integer n > 1 such that |f(z)|] < M|z|"* for |z| > R. Sow that f is a
polynomial of degree < n.

Solution: By Liouville’s theorem (which applies since f, being continuous, is bounded
on the compact set |z| < R as well), this is actually true for n = 0 as well. This suggests
we might be able to proceed inductively. So suppose the statement is true for n > 0. f
is entire, so in particular it has a derivative at 0, meaning the function

f(z)-f(0)
F(z) = {— 270
£1(0),2=0

is well defined and continuous everywhere. Since f is entire, it has a power series
expansion about 0 that converges everywhere, which gives an expansion for F(z) that
also converges everywhere; therefore, F' is entire. Now we see that if |f(z)] < M|z|"*!
for |z] > R, then we can take |z| > R, which forces

oy < LELHIO)
< M|z|" + @

Thus, if we instead take |z| > max(R, 1, @), we will have |F(2)| < (M +1)|z|". As a
result, F' is a polynomial of degree < n, so away from 0 f is a polynomial of degree at
most n + 1. Of course, by continuity, this means f’s value at 0 comes from the polyno-
mial as well, and we are done.

Alternate Solution: We can also use the same method of proof as that of Liouville’s
theorem, by showing f™*1)(z) = 0 for all z. To this end, if we take r sufficiently large
(ie, much larger than both R and |z|), then for all w on the circle v(r, z) of radius r
around z, we will have |f(w)| < M|w|" < M(r + |z|)" < M(2r)". Now we can apply
Corollary 2.13 to find that
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This is true for all large enough r, so f™*Y(z) = 0 for all z. It is easy to check (for
example, by looking at f’s power series expansion), that this forces f to be a polynomial
of degree < n.

. Find all entire functions f such that f(z) = e” for = € R.

Solution: Let f be such a function. Then f(z) — e” is an entire function that is zero
on R. Since R contains a limit point (it’s even closed), we conclude that it is zero
everywhere, and f(z) = e* is the only such function.

. Let G be a region and suppose that f: G — C is analytic and a € G such that
|f(a)] <|f(2)] for all z € G. Show that either f(a) =0 or a is constant.

Solution: If f(a) # 0, then % is defined and analytic on G. Observing that |ﬁ| is

bounded above by |ﬁ|, we can use the maximum modulus principal to say that % is
constant. It is also nonzero, since f is, so f is also constant.

. Let G be a region and let f and g be analytic functions on G such that
f(2)g(z) =0 for all z in G. Show that either f =0 or g =0.

Solution: Suppose f # 0, so there is some a € G with f(a) # 0. By continuity, we can
also find an open ball B C G around a such f(z) # 0 for a # 0. Our initial assumption
then shows that g must be zero on B. B has many limit points in G, so we must have
g=0.

. Let U : C — R be a harmonic function such thatU(z) > 0 for all z € C; prove
that U is constant.

Solution: Since U is harmonic on C, we can find a harmonic conjugate V' : C — R.
Let f be the resulting analytic function, and let g(z) = e=/(*). Then

l9(2)] = |e™?]
<eé°

Y

and ¢ is constant by Liouville’s theorem. Thus f, and consequently U, is constant.
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10. Show that if f and ¢ are analytic functions on a region G such that fg is

11.

analytic then either f is constant or g = 0.

Solution: If ¢ # 0, we claim that it is enough to show f is analytic on a connected

open subset U of GG. This is true because then Re f = % and Im f = fQ;Zf will also be

analytic on U. We have already seen in an earlier homework that this can only happen
if they are both constant—that is, if f is constant. But then f agrees with a constant
function on an open subset of GG, so as in problem 6 it must be constant on all of G.

To check that f is analytic, let @ € G be such that g(a) # 0. As before, this means that
we can take U to be an open ball around a contained in G, as f = % (which makes
sense because ¢ is nonzero on U) is the quotient of two analytic functions on U.

Section 4.4
Fix w = re” # 0 and let v be a rectifiable path in C — {0} from 1 to w. Show

that there is an integer k& such that f7 27tz = logr + i + 27ik.

Solution: Choose a branch of the logarithm defined at both 1 and w. For instance, if
w ¢ R we could take the principal branch, while if w € Ry we could take the branch
cut at Regi instead by setting log Re’” = log R + i, —5 <7< 37” At any rate, we can
find a region containing 1 and w such that our branch logz is defined. Let 4’ be any
rectifiable path from 1 to w in this region that does not go through 0. Now we have a
primitive for 2~ around «/, so

/ 27 'dz =logw —log 1
,Y/
= logr +i(0') + 2min

for some n, @ depending on what branch we took (where re?® = w). Of course, §' =

0 + 2mm for some m. However, we also know that

2mil = / 27tz
=

is just the winding number of the closed curve v — +/ around 0, and we see that

/z‘ldz:/z_ldz+/ 27tz
Y 04 Y=

= logr + 0 + 2mim + 2mwin + 2mwil
= logr + 10 + 2mik.
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