Math 220A HW 8 Solutions

Section 4.4
3. Let $p(z)$ be a polynomial of degree n and let $R>0$ be sufficiently large so that p never vanishes in $\{z:|z| \geq R\}$. If $\gamma(t)=R e^{i t}, 0 \leq t \leq 2 \pi$, show that $\int_{\gamma} \frac{p^{\prime}(z)}{p(z)} d z=2 \pi i n$.

Solution: This follows quickly from the fundamental theorem of algebra: write

$$
p(z)=c \prod_{i=1}^{n}\left(z-\alpha_{i}\right)
$$

with $c, \alpha_{i} \in \mathbb{C}$. By the product rule,

$$
\frac{p^{\prime}(z)}{p(z)}=\sum_{i=1}^{n} \frac{1}{z-\alpha_{i}}
$$

so when we integrate we get $2 \pi i$ times the sum of the winding numbers of all the roots with respect to γ. These are all 1 because we've chosen R so that all of the α_{i} are inside the circle γ (and thus in the same connected component as 0), so we end up with $2 \pi i n$.

Section 4.5

5. Let γ be a closed rectifiable curve in \mathbb{C} and $a \notin\{\gamma\}$. Show that for $n \geq 2$, $\int_{\gamma}(z-a)^{-n} d z=0$.

Solution: We don't even need to use any results from this section. As $n \geq 2,(z-a)^{-n}$ has a primitive (namely, $\frac{1}{1-n}(z-a)^{1-n}$) defined in a neighborhood around γ, so the integral around a closed curve must be 0 .
6. Let f be analytic on $D=B(0 ; 1)$ and suppose $|f(z)| \leq 1$ for $|z|<1$. Show $\left|f^{\prime}(0)\right| \leq 1$.

Solution: This is Cauchy's estimate with $M=1$.
7. Let $\gamma(t)=1+e^{i t}$ for $0 \leq t \leq 2 \pi$. Find $\int_{\gamma}\left(\frac{z}{z-1}\right)^{n}$ for all positive integers n.

Solution: Letting $f(z)=z^{n}$, this integral is just

$$
\frac{2 \pi i}{(n-1)!} f^{(n-1)}(1)
$$

Of course,

$$
f^{(n-1)} z^{n}=n!z,
$$

so

$$
\int_{\gamma}\left(\frac{z}{z-1}\right)^{n}=2 \pi i n .
$$

