Math 220A HW 8 Solutions

Section 4.4

3. Let p(z) be a polynomial of degree n and let R > 0 be sufficiently large so that p never vanishes in $\{z : |z| \ge R\}$. If $\gamma(t) = Re^{it}$, $0 \le t \le 2\pi$, show that $\int_{\gamma} \frac{p'(z)}{p(z)} dz = 2\pi i n$.

Solution: This follows quickly from the fundamental theorem of algebra: write

$$p(z) = c \prod_{i=1}^{n} (z - \alpha_i)$$

with $c, \alpha_i \in \mathbb{C}$. By the product rule,

$$\frac{p'(z)}{p(z)} = \sum_{i=1}^{n} \frac{1}{z - \alpha_i}.$$

so when we integrate we get $2\pi i$ times the sum of the winding numbers of all the roots with respect to γ . These are all 1 because we've chosen R so that all of the α_i are inside the circle γ (and thus in the same connected component as 0), so we end up with $2\pi i n$.

Section 4.5

5. Let γ be a closed rectifiable curve in \mathbb{C} and $a \notin \{\gamma\}$. Show that for $n \geq 2$, $\int_{\gamma} (z-a)^{-n} dz = 0$.

Solution: We don't even need to use any results from this section. As $n \ge 2$, $(z-a)^{-n}$ has a primitive (namely, $\frac{1}{1-n}(z-a)^{1-n}$) defined in a neighborhood around γ , so the integral around a closed curve must be 0.

6. Let f be analytic on D = B(0;1) and suppose $|f(z)| \le 1$ for |z| < 1. Show $|f'(0)| \le 1$.

Solution: This is Cauchy's estimate with M = 1.

7. Let $\gamma(t) = 1 + e^{it}$ for $0 \le t \le 2\pi$. Find $\int_{\gamma} \left(\frac{z}{z-1}\right)^n$ for all positive integers n.

Solution: Letting $f(z) = z^n$, this integral is just

$$\frac{2\pi i}{(n-1)!}f^{(n-1)}(1).$$

Of course,

$$f^{(n-1)}z^n = n!z,$$

 \mathbf{SO}

$$\int_{\gamma} \left(\frac{z}{z-1}\right)^n = 2\pi i n.$$