Math 220A HW 9 Solutions

Section 4.6

5. Evaluate the integral
$$\int_{\gamma} \frac{dz}{z^2+1}$$
 where $\gamma(t) = 2|\cos 2\theta|e^{i\theta}$ for $0 \le \theta \le 2\pi$.

Solution: If we graph γ , we see that it makes a flower centered at the origin with petals of length 2 along the positive and negative parts of each axis. If we let $G = \mathbb{C} \setminus \{\pm i\}$, then collapsing the petals on the x-axis to the origin is a homotopy in G. Next, we can widen the two remaining petals to get a homotopy in G from γ to the union of circles of radius 1 around i and -i. Call these γ_+ and γ_- , respectively; then

$$\int_{\gamma} \frac{1}{z^2 + 1} dz = \int_{\gamma_+} \frac{1}{z^2 + 1} dz + \int_{\gamma_-} \frac{1}{z^2 + 1} dz.$$

Now we can use the partial fraction decomposition

$$\frac{1}{z^2+1} = \frac{1}{2i}(\frac{1}{z-i} - \frac{1}{z+i})$$

and the fact that $\frac{1}{z\pm 1}$ is analytic on γ_{\pm} (so that their integrals over the respective curves are zero) to get that

$$\int_{\gamma} \frac{1}{z^2 + 1} dz = \frac{1}{2i} \left(\int_{\gamma_+} \frac{1}{z - i} dz - \int_{\gamma_-} \frac{1}{z + i} dz \right)$$
$$= \pi (n(\gamma_+; i) - n(\gamma_-; -i))$$
$$= \pi (1 - 1)$$
$$= 0.$$

6. Let $\gamma(\theta) = \theta e^{i\theta}$ for $0 \le \theta \le 2\pi$ and $\gamma(\theta) = 4\pi - \theta$ for $2\pi \le \theta \le 4\pi$. Evaluate $\int_{\gamma} \frac{dz}{z^2 + \pi^2}$.

Solution: Let $f = \frac{1}{z^2 + \pi^2}$. γ is a (counterclockwise) spiral from 0 to 2π , then a line segment from 2π to 0. Notice that the resulting closed curve only encloses one of the poles of f—namely, $-i\pi$ —and in fact is homotopic in $G := \mathbb{C} \setminus \{\pm \pi i\}$ to a circle of radius π around that pole. If we let τ be this circle, then $g(z) := \frac{1}{z - i\pi}$ is analytic in a disc containing τ , so we can use Cauchy's formula to find that

$$\int_{\tau} \frac{1}{z^2 + \pi^2} dz = \int_{\tau} \frac{g(z)}{z + i\pi} dz$$
$$= 2\pi i \cdot g(-i\pi)$$
$$= -1.$$

Now $\gamma \sim \tau$ in G implies ¹ that

$$\int_{\gamma} \frac{dz}{z^2 + \pi^2} = \int_{\tau} \frac{dz}{z^2 + \pi^2}$$
$$= -1$$

10. Find all possible values of $\int_{\gamma} \frac{dz}{1+z^2}$ where γ is any closed rectifiable curve in \mathbb{C} not passing through $\pm i$.

Solution: As before, we can take partial fractions to write

$$\begin{split} \int_{\gamma} \frac{dz}{1+z^2} &= \frac{1}{2i} \int_{\gamma} (\frac{1}{z-i} - \frac{1}{z+i}) \\ &= \pi(n(\gamma;i) - n(\gamma;-i)). \end{split}$$

Thus (taking γ to be 0 or a circle wrapping *n* times around $\pm i$, for instance), $\int_{\gamma} \frac{dz}{1+z^2}$ can be π times any integer. If you've taken or are taking topology, this is related to the fact that the fundamental group of $\mathbb{C} \setminus \{\pm i\}$ is $\mathbb{Z} * \mathbb{Z}$.

¹as f is analytic in G by construction

Section 4.7

- 2. Let G be open and suppose that γ is a closed rectifiable curve in G such that $\gamma \approx 0$. Set $r = d(\{\gamma\}, \partial G)$, and $H = \{z \in \mathbb{C} : n(\gamma; z) = 0\}$.
 - (a) Show that $\{z: d(z, \partial G) < \frac{1}{2}r\} \subset H$.

Solution: Let S be this set. If $S = \emptyset$ (ie, if $\partial G = \emptyset$) this is obvious; otherwise, suppose $z \in S$. In $\mathbb{C} \setminus \{\gamma\}$, z must lie in the same connected component as some $w \in \partial G$ because z is closer to ∂G than γ . Therefore, they have the same winding number with respect to γ . Since G is open, w is not in G, so by assumption

$$n(\gamma; z) = n(\gamma; w) = 0,$$

and $z \in H$. Thus $S \subset H$.

(b) Use part (a) to show that if $f: G \to \mathbb{C}$ is analytic then $f(z) = \alpha$ has at most a finite number of solutions z such that $n(\gamma; z) \neq 0$.

Solution: This is false unless we assume f is nonconstant. By replacing f with $f - \alpha$ (which is also analytic), we can assume $\alpha = 0$. We already know that $n(z; \gamma)$ can only be nonzero on the bounded compenents of $\mathbb{C} \setminus \{\gamma\}$, so in particular the set Z of zeroes of f with nonzero winding number is bounded. However, we also know Z is discrete since f is nonconstant.

We claim Z is also closed. To see this, suppose that z is a limit point of Z. If $z \notin Z$, then it cannot be in G either (again because f is nonconstant), so it must be in ∂G . But then we could find $z_0 \in Z$ within $\frac{1}{2}r$ of z, which by part (a) is impossible. Thus Z is closed since it contains all its limit points.

Finally, Z is compact since it is closed and bounded, and any discrete compact set is finite.

3. Let f be analytic in B(a; R) and suppose that f(a) = 0. Show that a is a zero of multiplicity m iff $f^{(m-1)}(a) = \cdots = f(a) = 0$ and $f^{(m)}(a) \neq 0$.

Solution: Both directions follow from the power series expansion of f around a.