Math 220A HW 9 Solutions

Section 4.6
5. Evaluate the integral $\int_{\gamma} \frac{d z}{z^{2}+1}$ where $\gamma(t)=2|\cos 2 \theta| e^{i \theta}$ for $0 \leq \theta \leq 2 \pi$.

Solution: If we graph γ, we see that it makes a flower centered at the origin with petals of length 2 along the positive and negative parts of each axis. If we let $G=\mathbb{C} \backslash\{ \pm i\}$, then collapsing the petals on the x-axis to the origin is a homotopy in G. Next, we can widen the two remaining petals to get a homotopy in G from γ to the union of circles of radius 1 around i and $-i$. Call these γ_{+}and γ_{-}, respectively; then

$$
\int_{\gamma} \frac{1}{z^{2}+1} d z=\int_{\gamma_{+}} \frac{1}{z^{2}+1} d z+\int_{\gamma_{-}} \frac{1}{z^{2}+1} d z
$$

Now we can use the partial fraction decomposition

$$
\frac{1}{z^{2}+1}=\frac{1}{2 i}\left(\frac{1}{z-i}-\frac{1}{z+i}\right)
$$

and the fact that $\frac{1}{z \pm 1}$ is analytic on $\gamma_{ \pm}$(so that their integrals over the respective curves are zero) to get that

$$
\begin{aligned}
\int_{\gamma} \frac{1}{z^{2}+1} d z & =\frac{1}{2 i}\left(\int_{\gamma_{+}} \frac{1}{z-i} d z-\int_{\gamma_{-}} \frac{1}{z+i} d z\right) \\
& =\pi\left(n\left(\gamma_{+} ; i\right)-n\left(\gamma_{-} ;-i\right)\right) \\
& =\pi(1-1) \\
& =0 .
\end{aligned}
$$

6. Let $\gamma(\theta)=\theta e^{i \theta}$ for $0 \leq \theta \leq 2 \pi$ and $\gamma(\theta)=4 \pi-\theta$ for $2 \pi \leq \theta \leq 4 \pi$. Evaluate $\int_{\gamma} \frac{d z}{z^{2}+\pi^{2}}$.

Solution: Let $f=\frac{1}{z^{2}+\pi^{2}} . \quad \gamma$ is a (counterclockwise) spiral from 0 to 2π, then a line segment from 2π to 0 . Notice that the resulting closed curve only encloses one of the poles of f-namely, $-i \pi$-and in fact is homotopic in $G:=\mathbb{C} \backslash\{ \pm \pi i\}$ to a circle of radius π around that pole. If we let τ be this circle, then $g(z):=\frac{1}{z-i \pi}$ is analytic in a disc containing τ, so we can use Cauchy's formula to find that

$$
\begin{aligned}
\int_{\tau} \frac{1}{z^{2}+\pi^{2}} d z & =\int_{\tau} \frac{g(z)}{z+i \pi} d z \\
& =2 \pi i \cdot g(-i \pi) \\
& =-1
\end{aligned}
$$

Now $\gamma \sim \tau$ in G implies ${ }^{1}$ that

$$
\begin{aligned}
\int_{\gamma} \frac{d z}{z^{2}+\pi^{2}} & =\int_{\tau} \frac{d z}{z^{2}+\pi^{2}} \\
& =-1
\end{aligned}
$$

10. Find all possible values of $\int_{\gamma} \frac{d z}{1+z^{2}}$ where γ is any closed rectifiable curve in \mathbb{C} not passing through $\pm i$.

Solution: As before, we can take partial fractions to write

$$
\begin{aligned}
\int_{\gamma} \frac{d z}{1+z^{2}} & =\frac{1}{2 i} \int_{\gamma}\left(\frac{1}{z-i}-\frac{1}{z+i}\right) \\
& =\pi(n(\gamma ; i)-n(\gamma ;-i)) .
\end{aligned}
$$

Thus (taking γ to be 0 or a circle wrapping n times around $\pm i$, for instance), $\int_{\gamma} \frac{d z}{1+z^{2}}$ can be π times any integer. If you've taken or are taking topology, this is related to the fact that the fundamental group of $\mathbb{C} \backslash\{ \pm i\}$ is $\mathbb{Z} * \mathbb{Z}$.

[^0]
Section 4.7

2. Let G be open and suppose that γ is a closed rectifiable curve in G such that $\gamma \approx 0$. Set $r=d(\{\gamma\}, \partial G)$, and $H=\{z \in \mathbb{C}: n(\gamma ; z)=0\}$.
(a) Show that $\left\{z: d(z, \partial G)<\frac{1}{2} r\right\} \subset H$.

Solution: Let S be this set. If $S=\emptyset$ (ie, if $\partial G=\emptyset$) this is obvious; otherwise, suppose $z \in S$. In $\mathbb{C} \backslash\{\gamma\}$, z must lie in the same connected component as some $w \in \partial G$ because z is closer to ∂G than γ. Therefore, they have the same winding number with respect to γ. Since G is open, w is not in G, so by assumption

$$
n(\gamma ; z)=n(\gamma ; w)=0
$$

and $z \in H$. Thus $S \subset H$.
(b) Use part (a) to show that if $f: G \rightarrow \mathbb{C}$ is analytic then $f(z)=\alpha$ has at most a finite number of solutions z such that $n(\gamma ; z) \neq 0$.
Solution: This is false unless we assume f is nonconstant. By replacing f with $f-\alpha$ (which is also analytic), we can assume $\alpha=0$. We already know that $n(z ; \gamma)$ can only be nonzero on the bounded compenents of $\mathbb{C} \backslash\{\gamma\}$, so in particular the set Z of zeroes of f with nonzero winding number is bounded. However, we also know Z is discrete since f is nonconstant.

We claim Z is also closed. To see this, suppose that z is a limit point of Z. If $z \notin Z$, then it cannot be in G either (again because f is nonconstant), so it must be in ∂G. But then we could find $z_{0} \in Z$ within $\frac{1}{2} r$ of z, which by part (a) is impossible. Thus Z is closed since it contains all its limit points.

Finally, Z is compact since it is closed and bounded, and any discrete compact set is finite.
3. Let f be analytic in $B(a ; R)$ and suppose that $f(a)=0$. Show that a is a zero of multiplicity m iff $f^{(m-1)}(a)=\cdots=f(a)=0$ and $f^{(m)}(a) \neq 0$.

Solution: Both directions follow from the power series expansion of f around a.

[^0]: ${ }^{1}$ as f is analytic in G by construction

