2. Simply connectedness

Defn. Let \(X \) and \(\mathbb{S} \) be metric spaces. A homeomorphism between \(X \) and \(\mathbb{S} \) is a continuous map \(f: X \to \mathbb{S} \) which is one-to-one, onto and s.t. \(f^{-1}: \mathbb{S} \to X \) is also continuous.

If such \(f: X \to \mathbb{S} \) exists, we say \(X \) and \(\mathbb{S} \) are homeomorphic.

Ex. Verify \(f: \mathbb{C} \to \mathbb{D} = \{ z \in \mathbb{C} : |z| < 1 \} \) given by \(f(z) = \frac{z}{1 + |z|^2} \) is a homeomorphism, thus \(\mathbb{C} \) and \(\mathbb{D} \) are homeomorphic.

Ex. Prove all annuli are homeomorphic to the punctured disk.

Thm. Let \(G \) be an open connected subset of \(\mathbb{C} \). Then TFAE:

(a) \(G \) is simply connected;
(b) \(n(\gamma; a) = 0 \) for every closed rectifiable curve \(\gamma \) in \(G \) and every \(a \) at \(\mathbb{C} - G \);
(c) \(\mathbb{C} \setminus G \) is connected;
(d) For any \(f \in \mathbb{H}(G) \), \(\exists \) a sequence of polynomials that converges to \(f \) in \(\mathbb{H}(G) \);
(e) For any \(f \in \mathbb{H}(G) \) and any closed rectifiable curve \(\gamma \) in \(G \), \(\int_{\gamma} f = 0 \);
(f) Every function \(f \in \mathbb{H}(G) \) has a primitive.
(g) For any \(f \in \mathbb{H}(G) \) s.t. \(f(z) \neq 0 \) in \(G \), \(\exists \) \(g \in \mathbb{H}(G) \).
(g) For any \(f \in H(G) \) s.t. \(f(z) \neq 0 \) in \(G \), \(\exists g \in H(G) \) s.t. \(f(z) = e^{g(z)} \).

(h) For any \(f \in H(G) \) s.t. \(f(z) \neq 0 \) in \(G \), \(\exists g \in H(G) \) s.t. \(f(z) = [g(z)]^2 \).

(i) \(G \) is homeomorphic to the unit disk.

(j) If \(u : G \to \mathbb{R} \) is harmonic, then \(\exists \) a harmonic \(v : G \to \mathbb{R} \) s.t. \(f = u + iv \) is analytic on \(G \).

Proof: We will prove \((a) \Rightarrow (b) \Rightarrow \ldots \Rightarrow (i) \Rightarrow (a)\) and \((b) \Rightarrow (j) \Rightarrow (g)\).

\((a) \Rightarrow (b)\)

Recall Cauchy's Thm: If \(f \in H(G) \) and \(\gamma \) \(\subset \) \(G \) closed rectifiable s.t. \(\gamma \cap \partial G = 0 \), then

\[\int_{\gamma} f = 0 \]

As

\[h(\gamma; a) = \frac{1}{2i\pi} \int_{\gamma} \frac{1}{z-a} \, dz = 0 \]

\[\frac{1}{z-a} \in H(\gamma) \]

\((b) \Rightarrow (c)\). Suppose \(\infty - G \) is not connected, then

\[\infty - G = A \cup B \]

where \(A, B \) are disjoint nonempty, closed subset of \(\infty - G \). As \(\infty \in A \cup B \),

WLOG, we assume \(\infty \in B \). Then \(A \) must be a compact subset of \(G \).

But then \(G_1 = G \cup A = \infty - B \) is an open set in \(G \) and contains \(A \).
By proposition 1.1, \(\exists \) a finite number of polygons \(\sigma_1, \ldots, \sigma_m \) in \(G \), \(-A = G \) s.t. for all \(f \in H(G) \)

\[
 f(z) = \frac{m}{2\pi i} \sum_{k=1}^{m} \int_{\sigma_k} \frac{f(w)}{w-z} \, dw
\]

for all \(z \epsilon A \). In particular, if \(f(z) \not\equiv 1 \), then

\[
 1 = \frac{m}{2\pi i} \sum_{k=1}^{m} h(\sigma_k; z) \text{ for } z \epsilon A.
\]

Thus for any \(z \epsilon A \), \(\exists \) at least one polygon \(\sigma_k \) in \(G \) s.t. \(h(\sigma_k; z) \not\equiv 0 \). This contradicts (b).

(c) \(\Rightarrow \) (d) See Corollary 1.5. Recall let \(E = \mathbb{R} \times \mathbb{R} \).

by Range's Thm, \(\exists \) rational \(\{R_n\} \) whose poles in \(E \) s.t. \(R_n \rightarrow f \) in \(H(G) \).

(d) \(\Rightarrow \) (e) Let \(\partial G \) closed rectifiable, \(f \in H(G) \).

Then \(\exists \{R_n\} \) s.t. \(R_n \rightarrow f \) in \(H(G) \).

As \(\int_{\partial G} R_n = 0 \Rightarrow \int_{\partial G} f = 0 \)

(e) \(\Rightarrow \) (f) Fix \(a \epsilon G \). Define

\[
 F(z) = \int_{\gamma} f(w) \text{ where } \gamma \text{ is any rectifiable curve in } G \text{ from } a \text{ to } z.
\]

Then \(F \) is well-defined and \(F' = f \) (see the pf of Corollary IV.6.16).

(f) \(\Rightarrow \) (g) \((g = \log f \Rightarrow g' = \frac{f'}{f}) \)

As \(f \not\equiv 0 \) in \(G \), \(\Rightarrow \frac{f'}{f} \in H(G) \)

or \(\int_{\partial G} \frac{f'}{f} = 0 \)
As \(f \to \infty \), \(\Rightarrow \frac{1}{f} \in H(\overline{G}) \).

By (f), \(\exists F \in H(G) \) s.t. \(F' = \frac{1}{f} \).

Consider \(h \cdot f e^{-F} \Rightarrow \)

\[
\begin{align*}
h' &= f' e^{-F} - f e^{-F} F' \\
&= e^{-F}(f' - f F') \\
&= 0 \\
\Rightarrow h &\equiv C \Rightarrow f = C e^{F}
\end{align*}
\]

Let \(C = e^{\xi} \), \(\xi \in \mathbb{C} \).

Let \(g = \xi + \overline{F} \Rightarrow f = e^{g} \).

\((g) \Rightarrow (h)\) By \((g)\), \(\exists G \in H(G) \) s.t. \(f = e^{g(2)} \).

Let \(h = e^{\frac{g}{2}} \Rightarrow h^2 = f \).

\((h) \Rightarrow (i)\) If \(G = \mathbb{C} \), then the function \(\mathbb{C}(1+1) \) gives a homeomorphism from \(\mathbb{C} \) to \(\mathbb{D} \).

If \(G \neq \mathbb{C} \), by the pf of Riemann mapping thm, \(\exists f \in H(G) \) one-to-one, onto \(\mathbb{D} \).

\((i) \Rightarrow (a)\) Trivial.

\((h) \Rightarrow (j)\) First recall we have proved \((j)\) for \(G = \mathbb{C} \) or \(\mathbb{D} \).

Now if \(G \neq \mathbb{C} \), then the Riemann mapping thm, \(\Rightarrow \exists h \in H(G) \), s.t. \(h \) is one-to-one and \(h(G) = \mathbb{D} \).

If \(U : G \to \mathbb{R} \) harmonic,

Claim: \(U_i = U \circ h^{-1} \) is harmonic on \(\mathbb{D} \).

Pf: Exercise.

By Riemann \(\exists V_i : D \to \mathbb{R} \) s.t. \(f_i = U_i + iV_i \in H(D) \).
Exercise.

By Chapter III, \(\exists V: D \to \mathbb{R} \) s.t \(f_i = u_i + i v_i \in H(\mathbb{D}) \)

Let \(f = f_i \circ h \). \(\Rightarrow f \in H(G) \) and

\[
\hat{f} = (\text{Re} f_i) \circ h + i (\text{Im} f_i) \circ h
\]

\(\Rightarrow u = u_i \circ h = \text{Re} f \)

Thus \(V = \text{Im} f = \text{Im} f_i \circ h \) is the desired function.

(i) \(\Rightarrow \) (g) Suppose \(f: G \to \mathbb{C} \) is analytic and \(f \neq 0 \) in \(G \)

Let \(U = \text{Re} f \), \(V = \text{Im} f \).

Set \(U: G \to \mathbb{R} \) to be

\[
U = \log |f(z)|
\]

Claim: \(U \) is harmonic in \(G \)

Pf: Exercise

By (i), \(\exists a \) harmonic \(V: G \to \mathbb{C} \) s.t

\[
\hat{g} = u + i v \in H(G)
\]

Set \(h = e^\hat{g} \). Then \(h \in H(G) \) and \(h \neq 0 \) in \(G \).

Moreover, \(|\frac{f(z)}{h(z)}| = 1 \)

Thus \(\frac{f}{h} \equiv c \) with \(|c| = 1 \)

Note \(c = e^{\alpha} \) for some \(\alpha \in \mathbb{C} \)

\(\Rightarrow f = c h = e^{\alpha + \hat{g}} = e^{\hat{g}} \) where \(g = \alpha + \hat{g} \)

Example:

Let \(G = \mathbb{C} - \{ z = r e^{i \pi} : 0 \leq r < \infty \} \)

prove \(G \) is simply connected.

Pf: \(C_{\infty} - G = \{ z : e^{i \pi} : 0 \leq r \leq \infty \} \).
Pf: \(C^\infty - G = \{ x e^{ir} : 0 \leq r \leq \infty \} \).

It is connected.

By the above thm, \(G \) is simply connected.

3. Mittag-Leffler's Thm

Q: Let \(G \subset \mathbb{C} \) open and \(\{a_k\} \subset G \) a sequence of distinct pts s.t \(\{a_k\} \) has no limit pt in \(G \).

For each \(k \geq 1 \), given rational functions
\[
S_k(z) = \frac{\sum_{j=1}^{m_k} A_{jk}}{(z-a_k)^{r}} \tag{x}
\]

Where \(m_k \in \mathbb{Z}^+ \), \(A_{jk} \in \mathbb{C} \).

Does there exist \(f \in H(G) \) whose poles are exactly \(\{a_k\} \) and s.t the singular part of \(f \) at \(a_k \) is \(S_k(z) \).

The answer is yes by Mittag-Leffler's Thm.

Thm (Mittag-Leffler's Thm) Let \(G \) be an open set, \(\{a_k\} \) a sequence of distinct pts in \(G \) without a limit pt in \(G \), and \(\{S_k(z)\} \) be the sequence of rational functions given by \((x) \) Then there is a meromorphic function \(f \) on \(G \) whose poles are exactly the pts \(\{a_k\} \) and s.t the singular part of \(f \) at \(a_k \) is \(S_k(z) \).

Idea of Pf: Naively, we can sum up \(S_k(z) \)'s to get
\[
\sum_{k=1}^{\infty} S_k(z) \tag{y}
\]

But this may not converge.

To overcome this, we will apply Runge's Thm to
To overcome this, we will apply Runge’s Thm to find rational functions \(\{ R_k(\mathbf{z}) \} \) with poles in \(\mathbb{C}^\infty - \mathbb{G} \), s.t. \(|S_k(\mathbf{z}) - R_k(\mathbf{z})| \) small and thus \(\sum_{k=1}^{\infty} (S_k(\mathbf{z}) - R_k(\mathbf{z})) \) converges.

Pf: Step 1: Let \(\{ K_n \}_{n=1}^{\infty} \) be an exhaustion sequence of \(\mathbb{G} \),

\[
G = \bigcup_{n=1}^{\infty} K_n, \quad K_n \subset \text{int } K_{n+1}.
\]

and each component of \(\mathbb{C}^\infty - K_n \) contains a component of \(\mathbb{C}^\infty - \mathbb{G} \). (see proposition VII.1.2)

As each \(K_n \) is compact and \(\{ f_k \} \) has no limit pt in \(\mathbb{G} \),

\[\Rightarrow \text{There are only finite } f_k \text{'s in each } K_n. \]

Define

\[I_1 = \{ k : f_k \in K_1 \} \]

\[I_n = \{ k : f_k \in K_n - K_{n-1} \} \text{ for } n \geq 2. \]

Define functions \(f_n \) by

\[f_n(\mathbf{z}) = \sum_{k \in I_n} S_k(\mathbf{z}). \text{ for } n \geq 1. \]

Then \(f_n \) is rational and its poles are pts \(\{ k \in I_n \} \subset K_n - K_{n-1}. \) (If \(I_n = \emptyset \), let \(f_n = 0 \))

Since \(f_n \) has no poles in \(K_{n-1} \) (for \(n \geq 2 \)), it is analytic in a nbhd of \(K_{n-1} \).

Step 2: Apply Runge’s Thm with \(E = \mathbb{C}^\infty - \mathbb{G} \), \(\exists \text{ a rational } R_n(\mathbf{z}) \) with poles in \(\mathbb{C}^\infty - \mathbb{G} \) s.t.

\[0 \leq |S_n(\mathbf{z}) - R_n(\mathbf{z})| \text{ for } \mathbf{z} \in K_{n-1}. \]
$K_n(z)$ with poles in $C \setminus \mathbb{G} > 0$

$|f_n(z) - R_n(z)| < (\frac{1}{2})^n$ for $z \in K_{n-1}$.

Claim: $f(z) = f_1(z) + \sum_{n=2}^{\infty} \left[f_n(z) - R_n(z) \right]$ (**) is the desired meromorphic function.

Pf: (1) f is analytic in $G - \{a_k: k \geq 1\}$.

Indeed, let $K \subset G - \{a_k: k \geq 1\}$ be compact. Then $K \subset K_N$ for some large N. \Rightarrow

When $n \geq N$, we have $|f_n(z) - R_n(z)| < (\frac{1}{2})^n$ on K.

Thus (**) converges uniformly on K.

As K is arbitrary, \Rightarrow (**) converges in $H(G - \{a_k: k \geq 1\})$.

(2) a_k is a pole of f.

Fix $k \geq 1$. Choose $r > 0$ s.t. $\overline{B(a_k, r)} \subset G$ and $|a_k - a_j| > r$ for $\forall j \neq k$.

Note $\overline{B(a_k; r)} \subset K_N$ for some N.

Thus $f_n - R_n$ is analytic in $B(a_k; r)$ for large n.

\Rightarrow $f(z) = S_k(z) + g(z)$ for $0 < |z - a_k| < r$.

Where $g(z)$ is analytic in $B(a_k; r)$.

Hence $z = a_k$ is a pole of f and $S_k(z)$ is its principal part. This completes the pf.