Solutions: Homework 1

January 17, 2020

Problem 1. Prove the following Minimum Principle. If f is a non-constant analytic func-
tion on a bounded open set G and is continuous on G, then either f has a zero in G or |f]
assumes its minimum value on 0G.

Proof. Suppose f has no zero in G. If f has a zero on 0G, then we are done because that
is the minimum. Suppose that f has no zeroes in G. Then 1/f is a non-constant analytic
function on G and is continuous on G. Then, by the second version of the Maximum Modulus
Theorem applied to 1/ f, we get

max{lf(%)l:zea}:max{ﬁ:zeaG}.

But this is the same as saying that
min{|f(2)| : z € G} = min{|f(2)] : 2 € IG}.

So | f| assumes its minimum value on 9G.

]

Problem 2. Let G be a bounded region and suppose f is continuous on G and analytic on
G. Show that if there is a constant ¢ > 0 such that |f(z)| = ¢ for all z on the boundary of
GG then either f is a constant function or f has a zero in G.

Proof. Suppose f has no zeroes in G. Then by Problem 1 above, we know that |f(z)] > ¢
for all z € GG, and by the second version of the Maximum Modulus Theorem, we know that
|f(2)| < cfor all z € G. This shows that |f(z)| = ¢ for all z € G. By the first version of the
Maximum Modulus Theorem, this implies that f is a constant function. n

Problem 3. Suppose that both f and g are analytic on B(0; R) with |f(z)| = |g(z)] for
|z| = R. Show that if neither f nor g vanishes in B(0; R) then there is a constant A, |\| = 1,
such that f = Ag.

Proof. Suppose that f and g has no zeroes on dB(0; R). Then f/g is analytic on B(0; R)
with |f(2)/g(2)] = 1 on 0B(0; R) and with no zeroes in B(0; R). So by Problem 2 above,
f/g is a constant function, say, A with |A\| = 1. So f = Ag with |\| = 1. Now suppose that
f and g has zeroes on 0B(0; R). Note that they have the same zeroes. Also, since f and
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g are analytic on B(0; R), their zeroes are isolated, and hence there are only finitely many
of them, say, 21, ..., z,. Suppose z; is a zero of f of multiplicity £ and of ¢ with multiplicity
k. Then f(z) = (¢ — z1)¥fi(2) and g(z) = (2 — 21)" g1(2) with f; and g; both analytic on
B(0; R) and fi(z1) # 0 and ¢,(2) # 0. So we have |z — z(|*| f1(2)| = |z — 21|¥ |g1(2)] for all
|z| = R. If k # k', this gives a contradiction by taking z (with |z| = R) arbitrarily close to
z1. So k = k'. Similarly, for any zero in dB(0; R), the multiplicities are the same. So, let the
multiplicity of z; be k;. Then, if we define

; f(2)

)= o)

== ™9 = o

we get that f and § are analytic and has no zeroes in B(0; R) and |f(z)| = |§(2)] for |z| = R.
So f = A\g for some constant A with |A\| = 1. Hence f = Ag. O

Problem 4. Let f be analytic in the disk B(0; R) and for 0 < r < R define A(r) =
max{Ref(z) : |z] = r}. Show that unless f is a constant, A(r) is a strictly increasing
function of r.

Proof. Suppose r < s < R. Let g(z) = e/®). Then ¢ is analytic in B(0; R), and |g(z)| =
eRe 72) By the second version of the Maximum Modulus Theorem applied to ¢ and G =
B(0; 5), we have max{ef¢ 7). |2] = s} = max{eR* /) : |z] < s} > max{eR /) . |z]| = r}.
Since exp is an increasing function, this is the same as saying that A(s) > A(r). So A(.) is an
increasing function. Now suppose that A(s) = A(r) for some r < s < R. Then there exists
2o € |z| = r such that |g(z9)| > |g(z)] for all |z| < s. By the first version of the Maximum
Modulus Theorem, this implies that f must be a constant function. So A(.) has to be a
strictly increasing function. O]

Problem 5. Does there exist an analytic function f : D — D with f(3) = 2 and f/(3) = 27

Proof. For any analytic function f : D — D, we have

CETE

1N 72
!

)<« L o2
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So such an f cannot exist. O

So if f(3) = 2, we should have
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Problem 6. Suppose f: D — C satisfies Re f(z) > 0 for all z in D and suppose that f is
analytic and not constant.

(a) Show that Re f(z) > 0 for all z in D.

(b) By using an appropriate Mobius transformation, apply Schwarz’s Lemma to prove that
if £(0) =1 then

1f(2)] <
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for |z] < 1. What can be said if f(0) # 17
(c) Show that if f(0) =1, f also satisfies
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Proof. (a) By the open mapping theorem, f(D) is open in C. Since f(D) C {z: Re z > 0}
and f(D) is open, it should be contained in the interior of {z : Re z > 0}, which is {z :
Re z > 0}. Hence Re f(z) > 0 for all z in D.

(b) Let h(z) = 255. Then h is a Mdbius transformation that maps the right half plane to the

unit disk. Then ho f: D — D is analytic and not constant. ho f(0) = h(1) = 0. Hence, by
Schwarz’s Lemma, we have
[(ho f)(z)] <z

[F(2)] =

for all z € D. That is, for all z € D,

f(z) = 1]

Tt 7 <

Hence
1f(z) = < 2|1+ f(2)]) < 21X+ |f(2)])
But we have
[f(2)] =1 < |f(2) =1 < |2[(1+ | f(2)])
This proves the inequality.

If f(0) =a # 1, then (ho f)(0) = h(a) # 0. If g = Yu(a) 0 ho f, then we can apply Schwarz’s
Lemma on g to get |g(2)| < |z| for all z € D. A calculatlon shows that

_atlf) -
9(2) = a+1f(z)+a

(2) —af
|f(z) +al

f(2) = al < |2[([f(2) + @)

Using the triangle inequality, we get

[F ()] = lal < [=(17 ()] + la])

Then |
l9(2)] = 7

So we have

which implies, for all z € D

sl <ld( ) ol (157

(c) By part (a), f cannot have a zero in D. So 1/f is analytic and non constant and Re
1/f(z) >0 for all z € D. Also (1/f)(0) = 1. hence we can apply part (b) to 1/f to get

1 1+ ||
[F)]~ 1= ]
This proves part (c). O




Problem 7. Suppose f is analytic in some region containing B(0;1) and |f(z)| = 1 where
|z| = 1. Find a formula for f.

Proof. Suppose f has no zeroes in D. Then by Problem 3 above, applied to g =1, f = X for
some |A| = 1. Suppose that f is not constant and hence by the Maximum Modulus theorem
f maps D to D. Also, f has only finitely many zeros in B(0;1). Now suppose that f has
zeroes z1, ..., 2, in D of multiplicity ki, ..., k, respectively. The function (¢,,)* has a zero
only at z; and of multiplicity ;. Let f denote the function
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Then f is analytic in some region containing B(0; 1) and since ¢, maps dD to 9D, |f(z)| = 1

for |z| = 1. Also, f has no zeroes in D. Therefore f has to be a constant function. Hence

F=2te:)"

for some |A| = 1. O

f=

Problem 8. Is there an analytic function f on B(0;1) such that |f(2)] < 1 for |z] <
1, f(0) = %, and f'(0) = %? If so, find such an f. Is it unique?

Proof. Suppose such an f exists. Let f = @172 0 f. Then f(0) = 0. Also |f(z)| < 1 for
z € D.f'(0) = (¢12) (f(0))f'(0) = 2(1 — (5)*)~' = 1. By Schwarz’s Lemma, f(z) = cz for
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all z € D for some ¢ with |c| = 1. So f(z) = ¢_1/2(cz). Putting back the condition f’(0) = 3,
we see that ¢ has to be 1. So f = ¢_;/5. Conversely, it is obvious that ¢_;/, satisfies all the

conditions given in the problem. So, such an f exists and is unique. O



