Solutions: Homework 1

January 17, 2020

Problem 1. Prove the following Minimum Principle. If f is a non-constant analytic function on a bounded open set G and is continuous on \bar{G}, then either f has a zero in G or $|f|$ assumes its minimum value on ∂G.

Proof. Suppose f has no zero in G. If f has a zero on ∂G, then we are done because that is the minimum. Suppose that f has no zeroes in \bar{G}. Then $1 / f$ is a non-constant analytic function on G and is continuous on \bar{G}. Then, by the second version of the Maximum Modulus Theorem applied to $1 / f$, we get

$$
\max \left\{\frac{1}{|f(z)|}: z \in \bar{G}\right\}=\max \left\{\frac{1}{|f(z)|}: z \in \partial G\right\} .
$$

But this is the same as saying that

$$
\min \{|f(z)|: z \in \bar{G}\}=\min \{|f(z)|: z \in \partial G\} .
$$

So $|f|$ assumes its minimum value on ∂G.

Problem 2. Let G be a bounded region and suppose f is continuous on \bar{G} and analytic on G. Show that if there is a constant $c \geq 0$ such that $|f(z)|=c$ for all z on the boundary of G then either f is a constant function or f has a zero in G.

Proof. Suppose f has no zeroes in G. Then by Problem 1 above, we know that $|f(z)| \geq c$ for all $z \in G$, and by the second version of the Maximum Modulus Theorem, we know that $|f(z)| \leq c$ for all $z \in G$. This shows that $|f(z)|=c$ for all $z \in G$. By the first version of the Maximum Modulus Theorem, this implies that f is a constant function.

Problem 3. Suppose that both f and g are analytic on $\bar{B}(0 ; R)$ with $|f(z)|=|g(z)|$ for $|z|=R$. Show that if neither f nor g vanishes in $B(0 ; R)$ then there is a constant $\lambda,|\lambda|=1$, such that $f=\lambda g$.

Proof. Suppose that f and g has no zeroes on $\partial B(0 ; R)$. Then f / g is analytic on $\bar{B}(0 ; R)$ with $|f(z) / g(z)|=1$ on $\partial B(0 ; R)$ and with no zeroes in $B(0 ; R)$. So by Problem 2 above, f / g is a constant function, say, λ with $|\lambda|=1$. So $f=\lambda g$ with $|\lambda|=1$. Now suppose that f and g has zeroes on $\partial B(0 ; R)$. Note that they have the same zeroes. Also, since f and
g are analytic on $\bar{B}(0 ; R)$, their zeroes are isolated, and hence there are only finitely many of them, say, z_{1}, \ldots, z_{n}. Suppose z_{1} is a zero of f of multiplicity k and of g with multiplicity k^{\prime}. Then $f(z)=\left(z-z_{1}\right)^{k} f_{1}(z)$ and $g(z)=\left(z-z_{1}\right)^{k^{\prime}} g_{1}(z)$ with f_{1} and g_{1} both analytic on $\bar{B}(0 ; R)$ and $f_{1}\left(z_{1}\right) \neq 0$ and $g_{1}(z) \neq 0$. So we have $\left|z-z_{1}\right|^{k}\left|f_{1}(z)\right|=\left|z-z_{1}\right|^{k^{\prime}}\left|g_{1}(z)\right|$ for all $|z|=R$. If $k \neq k^{\prime}$, this gives a contradiction by taking z (with $|z|=R$) arbitrarily close to z_{1}. So $k=k^{\prime}$. Similarly, for any zero in $\partial B(0 ; R)$, the multiplicities are the same. So, let the multiplicity of z_{i} be k_{i}. Then, if we define

$$
\tilde{f}(z)=\frac{f(z)}{\prod\left(z-z_{i}\right)_{i}^{k}} \text { and } \tilde{g}(z)=\frac{g(z)}{\prod\left(z-z_{i}\right)_{i}^{k}}
$$

we get that \tilde{f} and \tilde{g} are analytic and has no zeroes in $\bar{B}(0 ; R)$ and $|\tilde{f}(z)|=|\tilde{g}(z)|$ for $|z|=R$. So $\tilde{f}=\lambda \tilde{g}$ for some constant λ with $|\lambda|=1$. Hence $f=\lambda g$.

Problem 4. Let f be analytic in the disk $B(0 ; R)$ and for $0 \leq r<R$ define $A(r)=$ $\max \{\operatorname{Re} f(z):|z|=r\}$. Show that unless f is a constant, $A(r)$ is a strictly increasing function of r.

Proof. Suppose $r<s<R$. Let $g(z)=e^{f(z)}$. Then g is analytic in $B(0 ; R)$, and $|g(z)|=$ $e^{\operatorname{Re} f(z)}$. By the second version of the Maximum Modulus Theorem applied to g and $G=$ $B(0 ; s)$, we have $\max \left\{e^{\operatorname{Re} f(z)}:|z|=s\right\}=\max \left\{e^{\operatorname{Re} f(z)}:|z| \leq s\right\} \geq \max \left\{e^{\operatorname{Re} f(z)}:|z|=r\right\}$. Since exp is an increasing function, this is the same as saying that $A(s) \geq A(r)$. So $A($.$) is an$ increasing function. Now suppose that $A(s)=A(r)$ for some $r<s<R$. Then there exists $z_{0} \in|z|=r$ such that $\left|g\left(z_{0}\right)\right| \geq|g(z)|$ for all $|z|<s$. By the first version of the Maximum Modulus Theorem, this implies that f must be a constant function. So $A($.$) has to be a$ strictly increasing function.

Problem 5. Does there exist an analytic function $f: D \rightarrow D$ with $f\left(\frac{1}{2}\right)=\frac{3}{4}$ and $f^{\prime}\left(\frac{1}{2}\right)=\frac{2}{3}$?
Proof. For any analytic function $f: D \rightarrow D$, we have

$$
\left|f^{\prime}\left(\frac{1}{2}\right)\right| \leq \frac{1-\left|f\left(\frac{1}{2}\right)\right|^{2}}{1-\left(\frac{1}{2}\right)^{2}}
$$

So if $f\left(\frac{1}{2}\right)=\frac{3}{4}$, we should have

$$
\left|f^{\prime}\left(\frac{1}{2}\right)\right| \leq \frac{7}{12}<\frac{2}{3}
$$

So such an f cannot exist.
Problem 6. Suppose $f: D \rightarrow \mathbb{C}$ satisfies $\operatorname{Re} f(z) \geq 0$ for all z in D and suppose that f is analytic and not constant.
(a) Show that $\operatorname{Re} f(z)>0$ for all z in D.
(b) By using an appropriate Möbius transformation, apply Schwarz's Lemma to prove that if $f(0)=1$ then

$$
|f(z)| \leq \frac{1+|z|}{1-|z|}
$$

for $|z|<1$. What can be said if $f(0) \neq 1$?
(c) Show that if $f(0)=1, f$ also satisfies

$$
|f(z)| \geq \frac{1-|z|}{1+|z|}
$$

Proof. (a) By the open mapping theorem, $f(D)$ is open in \mathbb{C}. Since $f(D) \subset\{z: \operatorname{Re} z \geq 0\}$ and $f(D)$ is open, it should be contained in the interior of $\{z: \operatorname{Re} z \geq 0\}$, which is $\{z$: $\operatorname{Re} z>0\}$. Hence $\operatorname{Re} f(z)>0$ for all z in D.
(b) Let $h(z)=\frac{z-1}{z+1}$. Then h is a Möbius transformation that maps the right half plane to the unit disk. Then $h \circ f: D \rightarrow D$ is analytic and not constant. $h \circ f(0)=h(1)=0$. Hence, by Schwarz's Lemma, we have

$$
|(h \circ f)(z)| \leq|z|
$$

for all $z \in D$. That is, for all $z \in D$,

$$
\frac{|f(z)-1|}{|1+f(z)|} \leq|z| .
$$

Hence

$$
|f(z)-1| \leq|z|(|1+f(z)|) \leq|z|(1+|f(z)|)
$$

But we have

$$
|f(z)|-1 \leq|f(z)-1| \leq|z|(1+|f(z)|)
$$

This proves the inequality.
If $f(0)=a \neq 1$, then $(h \circ f)(0)=h(a) \neq 0$. If $g=\varphi_{h(a)} \circ h \circ f$, then we can apply Schwarz's Lemma on g to get $|g(z)| \leq|z|$ for all $z \in D$. A calculation shows that

$$
g(z)=\frac{\bar{a}+1}{a+1} \frac{f(z)-a}{f(z)+\bar{a}} .
$$

Then

$$
|g(z)|=\frac{|f(z)-a|}{|f(z)+\bar{a}|}
$$

So we have

$$
|f(z)-a| \leq|z|(|f(z)+\bar{a}|)
$$

Using the triangle inequality, we get

$$
|f(z)|-|a| \leq|z|(|f(z)|+|a|)
$$

which implies, for all $z \in D$

$$
|f(z)| \leq|a|\left(\frac{1+|z|}{1-|z|}\right)=|f(0)|\left(\frac{1+|z|}{1-|z|}\right) .
$$

(c) By part (a), f cannot have a zero in D. So $1 / f$ is analytic and non constant and Re $1 / f(z)>0$ for all $z \in D$. Also $(1 / f)(0)=1$. hence we can apply part (b) to $1 / f$ to get

$$
\frac{1}{|f(z)|} \leq \frac{1+|z|}{1-|z|}
$$

This proves part (c).

Problem 7. Suppose f is analytic in some region containing $\bar{B}(0 ; 1)$ and $|f(z)|=1$ where $|z|=1$. Find a formula for f.

Proof. Suppose f has no zeroes in D. Then by Problem 3 above, applied to $g \equiv 1, f=\lambda$ for some $|\lambda|=1$. Suppose that f is not constant and hence by the Maximum Modulus theorem f maps D to D. Also, f has only finitely many zeros in $\bar{B}(0 ; 1)$. Now suppose that f has zeroes z_{1}, \ldots, z_{n} in D of multiplicity k_{1}, \ldots, k_{n} respectively. The function $\left(\varphi_{z_{i}}\right)^{k_{i}}$ has a zero only at z_{i} and of multiplicity k_{i}. Let \tilde{f} denote the function

$$
\tilde{f}=\frac{f}{\prod\left(\varphi_{z_{i}}\right)^{k_{i}}} .
$$

Then \tilde{f} is analytic in some region containing $\bar{B}(0 ; 1)$ and since $\varphi_{z_{i}}$ maps ∂D to $\partial D,|\tilde{f}(z)|=1$ for $|z|=1$. Also, \tilde{f} has no zeroes in D. Therefore \tilde{f} has to be a constant function. Hence

$$
f=\lambda \prod\left(\varphi_{z_{i}}\right)^{k_{i}}
$$

for some $|\lambda|=1$.
Problem 8. Is there an analytic function f on $B(0 ; 1)$ such that $|f(z)|<1$ for $|z|<$ $1, f(0)=\frac{1}{2}$, and $f^{\prime}(0)=\frac{3}{4}$? If so, find such an f. Is it unique?

Proof. Suppose such an f exists. Let $\tilde{f}=\varphi_{1 / 2} \circ f$. Then $\tilde{f}(0)=0$. Also $|\tilde{f}(z)| \leq 1$ for $z \in D \cdot \tilde{f}^{\prime}(0)=\left(\varphi_{1 / 2}\right)^{\prime}(f(0)) f^{\prime}(0)=\frac{3}{4}\left(1-\left(\frac{1}{2}\right)^{2}\right)^{-1}=1$. By Schwarz's Lemma, $\tilde{f}(z)=c z$ for all $z \in D$ for some c with $|c|=1$. So $f(z)=\varphi_{-1 / 2}(c z)$. Putting back the condition $f^{\prime}(0)=\frac{3}{4}$, we see that c has to be 1 . So $f=\varphi_{-1 / 2}$. Conversely, it is obvious that $\varphi_{-1 / 2}$ satisfies all the conditions given in the problem. So, such an f exists and is unique.

