
Solutions: Homework 1

January 17, 2020

Problem 1. Prove the following Minimum Principle. If f is a non-constant analytic func-
tion on a bounded open set G and is continuous on G, then either f has a zero in G or |f |
assumes its minimum value on ∂G.

Proof. Suppose f has no zero in G. If f has a zero on ∂G, then we are done because that
is the minimum. Suppose that f has no zeroes in G. Then 1/f is a non-constant analytic
function on G and is continuous on G. Then, by the second version of the Maximum Modulus
Theorem applied to 1/f, we get

max

{
1

|f(z)|
: z ∈ G

}
= max

{
1

|f(z)|
: z ∈ ∂G

}
.

But this is the same as saying that

min{|f(z)| : z ∈ G} = min{|f(z)| : z ∈ ∂G}.

So |f | assumes its minimum value on ∂G.

Problem 2. Let G be a bounded region and suppose f is continuous on G and analytic on
G. Show that if there is a constant c ≥ 0 such that |f(z)| = c for all z on the boundary of
G then either f is a constant function or f has a zero in G.

Proof. Suppose f has no zeroes in G. Then by Problem 1 above, we know that |f(z)| ≥ c
for all z ∈ G, and by the second version of the Maximum Modulus Theorem, we know that
|f(z)| ≤ c for all z ∈ G. This shows that |f(z)| = c for all z ∈ G. By the first version of the
Maximum Modulus Theorem, this implies that f is a constant function.

Problem 3. Suppose that both f and g are analytic on B(0;R) with |f(z)| = |g(z)| for
|z| = R. Show that if neither f nor g vanishes in B(0;R) then there is a constant λ, |λ| = 1,
such that f = λg.

Proof. Suppose that f and g has no zeroes on ∂B(0;R). Then f/g is analytic on B(0;R)
with |f(z)/g(z)| = 1 on ∂B(0;R) and with no zeroes in B(0;R). So by Problem 2 above,
f/g is a constant function, say, λ with |λ| = 1. So f = λg with |λ| = 1. Now suppose that
f and g has zeroes on ∂B(0;R). Note that they have the same zeroes. Also, since f and
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g are analytic on B(0;R), their zeroes are isolated, and hence there are only finitely many
of them, say, z1, ..., zn. Suppose z1 is a zero of f of multiplicity k and of g with multiplicity
k′. Then f(z) = (z − z1)kf1(z) and g(z) = (z − z1)k

′
g1(z) with f1 and g1 both analytic on

B(0;R) and f1(z1) 6= 0 and g1(z) 6= 0. So we have |z − z1|k|f1(z)| = |z − z1|k
′|g1(z)| for all

|z| = R. If k 6= k′, this gives a contradiction by taking z (with |z| = R) arbitrarily close to
z1. So k = k′. Similarly, for any zero in ∂B(0;R), the multiplicities are the same. So, let the
multiplicity of zi be ki. Then, if we define

f̃(z) =
f(z)∏

(z − zi)ki
and g̃(z) =

g(z)∏
(z − zi)ki

we get that f̃ and g̃ are analytic and has no zeroes in B(0;R) and |f̃(z)| = |g̃(z)| for |z| = R.
So f̃ = λg̃ for some constant λ with |λ| = 1. Hence f = λg.

Problem 4. Let f be analytic in the disk B(0;R) and for 0 ≤ r < R define A(r) =
max{Ref(z) : |z| = r}. Show that unless f is a constant, A(r) is a strictly increasing
function of r.

Proof. Suppose r < s < R. Let g(z) = ef(z). Then g is analytic in B(0;R), and |g(z)| =
eRe f(z). By the second version of the Maximum Modulus Theorem applied to g and G =
B(0; s), we have max{eRe f(z) : |z| = s} = max{eRe f(z) : |z| ≤ s} ≥ max{eRe f(z) : |z| = r}.
Since exp is an increasing function, this is the same as saying that A(s) ≥ A(r). So A(.) is an
increasing function. Now suppose that A(s) = A(r) for some r < s < R. Then there exists
z0 ∈ |z| = r such that |g(z0)| ≥ |g(z)| for all |z| < s. By the first version of the Maximum
Modulus Theorem, this implies that f must be a constant function. So A(.) has to be a
strictly increasing function.

Problem 5. Does there exist an analytic function f : D → D with f(1
2
) = 3

4
and f ′(1

2
) = 2

3
?

Proof. For any analytic function f : D → D, we have∣∣∣∣f ′(1

2

)∣∣∣∣ ≤ 1− |f(1
2
)|2

1− (1
2
)2

.

So if f(1
2
) = 3

4
, we should have ∣∣∣∣f ′(1

2

)∣∣∣∣ ≤ 7

12
<

2

3

So such an f cannot exist.

Problem 6. Suppose f : D → C satisfies Re f(z) ≥ 0 for all z in D and suppose that f is
analytic and not constant.
(a) Show that Re f(z) > 0 for all z in D.
(b) By using an appropriate Möbius transformation, apply Schwarz’s Lemma to prove that
if f(0) = 1 then

|f(z)| ≤ 1 + |z|
1− |z|
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for |z| < 1. What can be said if f(0) 6= 1?
(c) Show that if f(0) = 1, f also satisfies

|f(z)| ≥ 1− |z|
1 + |z|

.

Proof. (a) By the open mapping theorem, f(D) is open in C. Since f(D) ⊂ {z : Re z ≥ 0}
and f(D) is open, it should be contained in the interior of {z : Re z ≥ 0}, which is {z :
Re z > 0}. Hence Re f(z) > 0 for all z in D.
(b) Let h(z) = z−1

z+1
. Then h is a Möbius transformation that maps the right half plane to the

unit disk. Then h ◦ f : D → D is analytic and not constant. h ◦ f(0) = h(1) = 0. Hence, by
Schwarz’s Lemma, we have

|(h ◦ f)(z)| ≤ |z|
for all z ∈ D. That is, for all z ∈ D,

|f(z)− 1|
|1 + f(z)|

≤ |z|.

Hence
|f(z)− 1| ≤ |z|(|1 + f(z)|) ≤ |z|(1 + |f(z)|)

But we have
|f(z)| − 1 ≤ |f(z)− 1| ≤ |z|(1 + |f(z)|)

This proves the inequality.
If f(0) = a 6= 1, then (h ◦ f)(0) = h(a) 6= 0. If g = ϕh(a) ◦ h ◦ f, then we can apply Schwarz’s
Lemma on g to get |g(z)| ≤ |z| for all z ∈ D. A calculation shows that

g(z) =
a+ 1

a+ 1

f(z)− a
f(z) + a

.

Then

|g(z)| = |f(z)− a|
|f(z) + a|

.

So we have
|f(z)− a| ≤ |z|(|f(z) + a|)

Using the triangle inequality, we get

|f(z)| − |a| ≤ |z|(|f(z)|+ |a|)

which implies, for all z ∈ D

|f(z)| ≤ |a|
(

1 + |z|
1− |z|

)
= |f(0)|

(
1 + |z|
1− |z|

)
.

(c) By part (a), f cannot have a zero in D. So 1/f is analytic and non constant and Re
1/f(z) > 0 for all z ∈ D. Also (1/f)(0) = 1. hence we can apply part (b) to 1/f to get

1

|f(z)|
≤ 1 + |z|

1− |z|
This proves part (c).
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Problem 7. Suppose f is analytic in some region containing B(0; 1) and |f(z)| = 1 where
|z| = 1. Find a formula for f.

Proof. Suppose f has no zeroes in D. Then by Problem 3 above, applied to g ≡ 1, f = λ for
some |λ| = 1. Suppose that f is not constant and hence by the Maximum Modulus theorem
f maps D to D. Also, f has only finitely many zeros in B(0; 1). Now suppose that f has
zeroes z1, ..., zn in D of multiplicity k1, ..., kn respectively. The function (ϕzi)

ki has a zero
only at zi and of multiplicity ki. Let f̃ denote the function

f̃ =
f∏

(ϕzi)
ki
.

Then f̃ is analytic in some region containing B(0; 1) and since ϕzi maps ∂D to ∂D, |f̃(z)| = 1
for |z| = 1. Also, f̃ has no zeroes in D. Therefore f̃ has to be a constant function. Hence

f = λ
∏

(ϕzi)
ki

for some |λ| = 1.

Problem 8. Is there an analytic function f on B(0; 1) such that |f(z)| < 1 for |z| <
1, f(0) = 1

2
, and f ′(0) = 3

4
? If so, find such an f. Is it unique?

Proof. Suppose such an f exists. Let f̃ = ϕ1/2 ◦ f. Then f̃(0) = 0. Also |f̃(z)| ≤ 1 for

z ∈ D.f̃ ′(0) = (ϕ1/2)
′(f(0))f ′(0) = 3

4
(1 − (1

2
)2)−1 = 1. By Schwarz’s Lemma, f̃(z) = cz for

all z ∈ D for some c with |c| = 1. So f(z) = ϕ−1/2(cz). Putting back the condition f ′(0) = 3
4
,

we see that c has to be 1. So f = ϕ−1/2. Conversely, it is obvious that ϕ−1/2 satisfies all the
conditions given in the problem. So, such an f exists and is unique.
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