
Solutions: Homework 2

January 28, 2020

Problem 1. Let f(z) = 1
z(z−1)(z−2) ; give the Laurent Expansion of f(z) in each of the

following annuli: (a) ann (0; 1, 2); (b) ann (0; 2,∞).

Proof.

f(z) =
1

z

(
1

z − 2
− 1

z − 1

)
(a) If 1 < |z| < 2, 1

|z| < 1, hence

1

z − 1
=

1

z(1− 1
z
)

=
∞∑
n=1

1

zn
=

−1∑
n=−∞

zn

and | z
2
| < 1, hence

1

z − 2
= − 1

2(1− z
2
)

= −1

2

∞∑
n=0

zn

2n
=
∞∑
n=0

−1

2n+1
zn

So, f(z) =
∑
anz

n where

an =

{
−1 if n ≤ −2

− 1
2n+2 if n ≥ −1.

(b) If |z| > 2, as above, we have

1

z − 1
=

1

z(1− 1
z
)

=
∞∑
n=1

1

zn
=

−1∑
n=−∞

zn

but |2
z
| < 1, hence

1

z − 2
=

1

z(1− 2
z
)

=
∞∑
n=0

2n

zn+1
=

−1∑
n=−∞

1

2n+1
zn

So,

f(z) =
−2∑

n=−∞

(2−(n+2) − 1)zn
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Problem 2. Show that f(z) = tan z is analytic in C except for simple poles at z = π
2

+nπ,
for each integer n. Determine the singular part of f at each of these poles.

Proof. tan z = sin z
cos z

. sin z and cos z are entire functions, so f should be analytic in C except
possibly when cos z = 0, which happens iff z = π

2
+ nπ for some n ∈ Z. Also, note that

sin(π
2

+ nπ) = ±1 6= 0, so f certainly has a pole at π
2

+ nπ. Now note that all the zeroes of
cos z are simple, and hence all the poles of f are also simple. So, the singular part of f at
any of these poles will be of the form cn

z−(π
2
+nπ)

, where

cn = lim
z→π

2
+nπ

(z − (π
2

+ nπ))(sin z)

cos z
=

sin(π
2

+ nπ)

(cos)′(π
2

+ nπ)
= −1.

So, the singular part at π
2

+ nπ is −1
z−(π

2
+nπ)

.

Problem 3. If f : G→ C is analytic except for poles show that the poles of f cannot have
a limit point in G.

Proof. Let a be a limit point of the set of poles of f. Since poles are isolated singularities
and f is analytic except for poles, f is analytic at a. Hence f is well-defined in a small
neighbourhood of a. This contradicts the fact that a is a limit point of the set of poles of f.
So, the poles of f cannot have a limit point in G.

Problem 4. Suppose that f has an essential singularity at z = a. Prove the following
strengthened version of the Casorati-Weierstrass Theorem. If c ∈ C and ε > 0 are given
then for each δ > 0 there is a number α, |c− α| < ε, such that f(z) = α has infinitely many
solutions in B(a; δ).

Proof. Let c ∈ C and ε > 0 be fixed. Let Gn = f(B(a; 1/n) \ {a}) for n ≥ 1. Then
Gn is open in C, by the Open Mapping Theorem, and Gn is dense in C by the Casorati-
Weierstrass theorem. By the Baire Category Theorem, ∩∞n=1Gn is dense in C. Then, B(c; ε)∩
(∩∞n=1Gn) 6= ∅. Let α be such that α ∈ B(c; ε)∩ (∩∞n=1Gn). Then |c− α| < ε and there exists
zn ∈ B(a; 1/n)\{a} such that f(zn) = α. So, for any δ > 0, for n > 1/δ, there exists zn such
that f(zn) = α. Also, note that, zn → a, but zn 6= a for all n, and hence |{zn}| =∞.

Problem 5. Let f be analytic in G = {z : 0 < |z − a| < r} except that there is a sequence
of poles {an} in G with an → a. Show that for any ω in C there is a sequence {zn} in G with
a = lim zn and ω = lim f(zn).

Proof. Suppose that there exists ω ∈ C such that there does not exist any sequence {zn} ∈ G
with a = lim zn and ω = lim f(zn). Then there exists ε > 0, r > δ > 0 such that B(a; δ) ∩
f−1(B(ω; ε)) = ∅. Otherwise, for all n >> 0, there exists zn ∈ B(a; 1/n) ∩ f−1(B(ω; 1/n)),
which means that zn → a and f(zn)→ ω. Define g : B(a; δ) \ {a} → C by

g(z) =
1

f(z)− ω
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and g(an) = 0 for any |an − a| < δ. Clearly, g is analytic at all points other than the
an’s, because f(z) 6= w for all z ∈ B(a; δ). At an, f is a pole of order, say, kn. Then f =

fn/(z−an)kn for some fn analytic around an with fn(a) 6= 0 and hence g(z) = (z−an)kn
fn(z)−ω(z−an)kn

and since fn(an) 6= 0, putting g(an) = 0 makes g analytic around an. So, g is analytic in
B(a; δ) \ {a}. So, g has either a removable singularity, a pole or an essential singularity at a.
Clearly, it cannot be a pole, as lim |g(an)| = 0 6=∞. Also, for all z ∈ B(a; δ)\{a, an : n ∈ N},
|f(z) − ω| ≥ ε, and hence |g(z)| ≤ 1/ε for z ∈ B(a; δ) \ {a}. By the Casorati-Weierstrass
theorem, this implies that g cannot have an essential singularity at a. So, g has a removable
singularity at a. So, we can extend g to B(a; δ). Of course, g(a) = lim g(an) = 0. But this
implies that the zeroes of g has a limit point in B(a; δ), which implies g ≡ 0 in B(a; δ), which
is impossible. This contradicts our initial assumption, and hence completes the proof.

Problem 6. Calculate the following integrals:
(a) ∫ ∞

0

x2dx

x4 + x2 + 1

(b) ∫ ∞
0

cosx− 1

x2
dx

Proof. (a) Let R > 1. Let CR denote the upper semi-circle with center at 0 and radius R,
oriented in the counter-clockwise direction. The function f(z) = z2

z4+z2+1
has two simple

poles at eπi/3 and e2πi/3 in the upper half-plane. By the Residue Theorem,∫
CR

z2

z4 + z2 + 1
dz = 2πi(Resz=eπi/3f(z) +Resz=e2πi/3f(z))

= 2πi

(
lim

z→eπi/3

z2(z − eπi/3)
z4 + z2 + 1

+ lim
z→e2πi/3

z2(z − e2πi/3)
z4 + z2 + 1

)
= 2πi

(
1 + i

√
3

4i
√

3
+

1− i
√

3

4i
√

3

)
=

π√
3

Now, splitting CR into the arc part (z = Reiθ with 0 < θ < π) and the x-axis part (−R <
x < R), we have∫

CR

z2

z4 + z2 + 1
dz =

∫ π

0

(Reiθ)2

(Reiθ)4 + (Reiθ)2 + 1
iReiθdθ +

∫ R

−R

x2

x4 + x2 + 1
dx

Since x2

x4+x2+1
is an even function, we have∫

CR

z2

z4 + z2 + 1
dz =

∫ π

0

i(Reiθ)3

(Reiθ)4 + (Reiθ)2 + 1
dθ + 2

∫ R

0

x2

x4 + x2 + 1
dx

Let

IR :=

∫ π

0

i(Reiθ)3

(Reiθ)4 + (Reiθ)2 + 1
dθ
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Then

|IR| ≤
∫ π

0

R3

|(Reiθ)4 + (Reiθ)2 + 1|
dθ ≤

∫ π

0

R3

R4 −R2 − 1
dθ

Note that the second inequality happens only when R4 > R2 + 1, but we are concerned only
with R >> 1, so this is fine. So, we have

|IR| ≤
πR3

R4 −R2 − 1

for R >> 1. This implies that IR → 0 as R→∞. By the Residue Theorem calculations, we
have

π√
3

= lim
R→∞

IR + 2

∫ ∞
0

x2

x4 + x2 + 1
dx

So, we have ∫ ∞
0

x2

x4 + x2 + 1
dx =

π

2
√

3
.

(b) The function eiz−1
z2

has a simple pole at z = 0. If 0 < r < R, let γ be the closed curve
depicted in Example 2.7. (Two semicircles in the upper half plane with radii r and R joined
at the x-axis.) From Cauchy’s theorem, we have

∫
γ
f = 0. Breaking γ into its pieces,

0 =

∫ R

r

eix − 1

x2
dx+

∫
γR

eiz − 1

z2
dz +

∫ −r
−R

eix − 1

x2
dx−

∫
γr

eiz − 1

z2
dz

where γR and γr are the semicircles from R to −R and r to −r respectively, with both
oriented in the anti-clockwise direction. By a change of variables, we see that∫ −r

−R

eix − 1

x2
dx =

∫ R

r

e−ix − 1

x2
dx

So, we have

0 =

∫ R

r

eix + e−ix − 2

x2
dx+

∫
γR

eiz − 1

z2
dz −

∫
γr

eiz − 1

z2
dz

= 2

∫ R

r

cosx− 1

x2
dx+

∫
γR

eiz − 1

z2
dz −

∫
γr

eiz − 1

z2
dz

Also ∣∣∣∣ ∫
γR

eiz − 1

z2
dz

∣∣∣∣ =

∣∣∣∣i ∫ π

0

eiRe
iθ − 1

Reiθ
dθ

∣∣∣∣ ≤ 1

R

∫ π

0

|eiReiθ − 1|dθ

Note that |eiReiθ − 1| = |e−R sin θeiR cos θ − 1| ≤ e−R sin θ + 1 by the triangle inequality. Since
0 ≤ θπ, sin θ > 0, and so e−R sin θ ≤ 1. Hence, we have∣∣∣∣ ∫

γR

eiz − 1

z2
dz

∣∣∣∣ ≤ 2

R
.

Hence

lim
R→∞

∫
γR

eiz − 1

z2
dz = 0
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Now, ∫
γr

eiz − 1

z2
dz =

∫
γr

cos z − 1

z2
dz + i

∫
γr

sin z

z2
dz

Note that cos z−1
z2

has a removable singularity at z = 0, and hence there is a constant M > 0
such that

∣∣ cos z−1
z2

∣∣ ≤M for |z| ≤ 1. Hence,∣∣∣∣ ∫
γr

cos z − 1

z2
dz

∣∣∣∣ ≤ πrM

that is

lim
r→0

∫
γr

cos z − 1

z2
dz = 0.

Now, sin z
z2

has a simple pole at 0. So, ∫
Cr

sin z

z2
dz = 2πi

where Cr denotes the circle around 0 or radius r. So, we have∫ 2π

0

sin(reiθ)

reiθ
dθ = 2π

Splitting into two parts, we have∫ π

0

sin(reiθ)

reiθ
dθ +

∫ 2π

π

sin(reiθ)

reiθ
dθ = 2π

Changing θ to θ + π in the second integral, we get∫ π

0

sin(reiθ)

reiθ
dθ +

∫ π

0

sin(reiθ+iπ)

reiθ+iπ
dθ = 2π

Simplifying this, we get ∫ π

0

sin(reiθ)

reiθ
dθ = π.

But note that ∫
γr

sin z

z2
dz = i

∫ π

0

sin(reiθ)

reiθ
dθ = πi

So, we have

lim
r→0

∫
γr

eiz − 1

z2
dz = −π

So, taking limits as r → 0 and R→∞ above, we get∫ ∞
0

cosx− 1

x2
dx = −π

2
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Problem 7. Verify the following equations:
(a) ∫ π/2

0

dθ

a+ sin2 θ
=

π

2[a(a+ 1)]
1
2

, if a > 0;

(b) ∫ ∞
−∞

eax

1 + ex
dx =

π

sin aπ
if 0 < a < 1.

Proof. (a) sin2 θ = 1−cos 2θ
2

. So,∫ π/2

0

dθ

a+ sin2 θ
= 2

∫ π/2

0

dθ

2a+ 1− cos 2θ

Putting 2θ = π − α, we get∫ π/2

0

dθ

a+ sin2 θ
=

∫ π

0

dα

2a+ 1 + cosα

Since a > 0, 2a+ 1 > 1, and by Example 2.9 in the textbook, we have∫ π/2

0

dθ

a+ sin2 θ
=

∫ π

0

dα

2a+ 1 + cosα
=

π√
(2a+ 1)2 − 1

=
π

2[a(a+ 1)]
1
2

.

(b) Putting ex = t, we have ∫ ∞
−∞

eax

1 + ex
dx =

∫ ∞
0

ta−1

1 + t
dt

Since 0 < a < 1, 0 < 1− a < 1, and by Example 2.12 in the textbook, we have∫ ∞
−∞

eax

1 + ex
dx =

∫ ∞
0

t−(1−a)

1 + t
dt =

π

sin π(1− a)
=

π

sin aπ
.

Problem 8. Suppose that f has a simple pole at z = a and let g be analytic in an open
set containing a. Show that Res(fg; a) = g(a)Res(f ; a).

Proof. Since f has a simple pole at z = a and g is analytic around a, fg either has a simple
pole at a or has a removable singularity at a. So, Res(fg; a) = limz→a(z − a)f(z)g(z) =
limz→a(z − a)f(z) limz→a g(z) as both limits exist. Hence

Res(fg; a) = lim
z→a

(z − a)f(z) lim
z→a

g(z) = g(a)Res(f ; a).
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