Solutions: Homework 2

January 28, 2020

Problem 1. Let f(z) = m; give the Laurent Expansion of f(z) in each of the

following annuli: (a) ann (0;1,2); (b) ann (0;2, c0).

Proof.

(a) If 1 < |2] < 2, & < 1, hence
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and [3] < 1, hence

(b) If |z] > 2, as above, we have
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Problem 2. Show that f(z) = tan z is analytic in C except for simple poles at z = 7 +nr,
for each integer n. Determine the singular part of f at each of these poles.

Proof. tan z = zg;z . sin z and cos z are entire functions, so f should be analytic in C except
possibly when cosz = 0, which happens iff 2 = 7 + n7 for some n € Z. Also, note that
sin(§ +nm) = £1 # 0, so f certainly has a pole at § +nm. Now note that all the zeroes of
cos z are simple, and hence all the poles of f are also simple. So, the singular part of f at

any of these poles will be of the form %, where
2

(z = (5 +nm))(sin z) sin(% + nm)

¢, = lim = 2 =—1.
P Sy Cos 2 (cos)' (5 + nm)
So, the singular part at § + nw is ﬁim) n

Problem 3. If f : G — C is analytic except for poles show that the poles of f cannot have
a limit point in G.

Proof. Let a be a limit point of the set of poles of f. Since poles are isolated singularities
and f is analytic except for poles, f is analytic at a. Hence f is well-defined in a small
neighbourhood of a. This contradicts the fact that a is a limit point of the set of poles of f.
So, the poles of f cannot have a limit point in G. n

Problem 4. Suppose that f has an essential singularity at z = a. Prove the following
strengthened version of the Casorati-Weierstrass Theorem. If ¢ € C and € > 0 are given
then for each § > 0 there is a number «, |c — a| < €, such that f(z) = a has infinitely many
solutions in B(a;d).

Proof. Let ¢ € C and € > 0 be fixed. Let G,, = f(B(a;1/n) \ {a}) for n > 1. Then
G, is open in C, by the Open Mapping Theorem, and G,, is dense in C by the Casorati-
Weierstrass theorem. By the Baire Category Theorem, N9, G, is dense in C. Then, B(c;e)N
(N2, G,) # 0. Let o be such that a € B(c;e) N (NS, G,,). Then |¢ — a| < € and there exists
zn € B(a;1/n)\ {a} such that f(z,) = a. So, for any 6 > 0, for n > 1/0, there exists z, such
that f(z,) = a. Also, note that, z, — a, but 2, # a for all n, and hence |{z,}| = oo. O

Problem 5. Let f be analytic in G = {2 : 0 < |z — a|] < r} except that there is a sequence
of poles {a,} in G with a,, — a. Show that for any w in C there is a sequence {z,} in G with
a = lim z, and w = lim f(z,).

Proof. Suppose that there exists w € C such that there does not exist any sequence {z,} € G
with @ = lim z, and w = lim f(z,). Then there exists ¢ > 0,7 > § > 0 such that B(a;d) N
S7H(B(w;e)) = 0. Otherwise, for all n >> 0, there exists z, € B(a;1/n) N f~1(B(w;1/n)),
which means that z, — a and f(z,) — w. Define g : B(a;9) \ {a} — C by



and g(a,) = 0 for any |a, — a| < §. Clearly, ¢ is analytic at all points other than the
a,’s, because f(z) # w for all z € B(a;0). At a,, f is a pole of order, say, k,. Then f =

fn/(z—ay)* for some f, analytic around a,, with f,(a) # 0 and hence g(z) = %
and since f,(a,) # 0, putting g(a,) = 0 makes ¢ analytic around a,. So, ¢ is analytic in
B(a;0)\ {a}. So, g has either a removable singularity, a pole or an essential singularity at a.
Clearly, it cannot be a pole, as lim |g(a,)| = 0 # oco. Also, for all z € B(a;0)\{a,a, : n € N},
|f(2) —w| > ¢, and hence |g(2)| < 1/e for z € B(a;d) \ {a}. By the Casorati-Weierstrass
theorem, this implies that g cannot have an essential singularity at a. So, g has a removable
singularity at a. So, we can extend g to B(a;d). Of course, g(a) = lim g(a,) = 0. But this
implies that the zeroes of g has a limit point in B(a;d), which implies g = 0 in B(a;¢), which
is impossible. This contradicts our initial assumption, and hence completes the proof. [

Problem 6. Calculate the following integrals:
(a)
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Proof. (a) Let R > 1. Let Cg denote the upper semi-circle with center at 0 and radius R,

oriented in the counter-clockwise direction. The function f(z) = has two simple
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(b)
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poles at e and e in the upper half-plane. By the Residue Theorem,
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Now, splitting C'z into the arc part (z = Re? with 0 < 6 < 7) and the z-axis part (=R <
r < R), we have
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is an even function, we have
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Note that the second inequality happens only when R* > R? + 1, but we are concerned only
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with R >> 1, so this is fine. So, we have
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for R >> 1. This implies that Ir — 0 as R — oo. By the Residue Theorem calculations, we
have - )
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So, we have

(b) The function ei;l has a simple pole at z = 0. If 0 < r < R, let v be the closed curve
depicted in Example 2.7. (Two semicircles in the upper half plane with radii 7 and R joined

at the x-axis.) From Cauchy’s theorem, we have f7 f = 0. Breaking ~ into its pieces,
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where vg and 7, are the semicircles from R to —R and r to —r respectively, with both
oriented in the anti-clockwise direction. By a change of variables, we see that
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Note that |¢'Re"” — 1| = |e~BsinfeiReost _ | < o~Rsinf 4 1 1y the triangle inequality. Since

0 < O, sinf > 0, and so e~ "% < 1. Hence, we have
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Now,
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Note that COSZ# has a removable singularity at z = 0, and hence there is a constant M > 0
such that ‘“’S’z—é’l| < M for |z| < 1. Hence,
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that is

sin z

Now, *7%* has a simple pole at 0. So,
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where C). denotes the circle around 0 or radius r. So, we have
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Splitting into two parts, we have
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Changing 6 to 0 4+ 7 in the second integral, we get
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Simplifying this, we get

But note that
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Problem 7. Verify the following equations:

(a) B
T do
/ —5— = m -, ifa > 0;
o a-+sin”f  2a(a+1)]2

(b)
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Proof. (a) sin?§ = =220 Qo
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Putting 20 = 7 — «, we get
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Since a > 0,2a + 1 > 1, and by Example 2.9 in the textbook, we have
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Since 0 <a <1,0<1—a<1,and by Example 2.12 in the textbook, we have
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(b) Putting e® = ¢, we have
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Problem 8. Suppose that f has a simple pole at z = a and let g be analytic in an open
set containing a. Show that Res(fg;a) = g(a)Res(f;a).

Proof. Since f has a simple pole at z = a and g is analytic around a, fg either has a simple
pole at a or has a removable singularity at a. So, Res(fg;a) = lim, ,(z — a)f(2)g(z) =
lim, ,,(z —a) f(z)lim,_,, g(2) as both limits exist. Hence

Res(fg;a) = lim(z — a) f(2) lim g(2) = g(a) Res(f; a).
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