Solutions: Homework 3

February 7, 2020

Problem 1. Suppose f is analytic on B(0;1) and satisfies |f(z)| < 1 for |z| = 1. Find the
number of solutions (counting multiplicities) of the equation f(z) = 2" where n is an integer
larger than or equal to 1.

Proof. Let g(z) = f(z) — 2" for all z € B(0;1), and let h(z) = 2. Then since |f(z)| < 1 for
|z| = 1, g has no zeroes or poles on the unit circle. Obviously, h also has no poles or zeroes
on the unit circle. Note that, for |z| =1,

19(2) + h(2)| = [f(2)] <1 =[2"] < [h(2)] + |g(2)]

Then, by Rouché’s theorem, Z, — P, = Z;, — P,. Since g and h are analytic on B(0;1),
P, = P, = 0. Hence Z, = Zj, = n, since h has a zero of multiplicity n at 0 and has no other

zeroes. So, the equation f(z) = 2" has n solutions, counting multiplicities.
m

Problem 2. Let f be analytic in a neighbourhood of D = B(0;1). If |f(2)| < 1 for |2| = 1,
show that there is a unique z with |z| < 1 and f(z) = 2. If |f(2)| < 1 for |z| = 1, what can
you say?

Proof. By the problem above, the equation f(z) = z has exactly one solution in B(0;1).
Now, suppose that |f(z)] < 1 for |z| = 1. Suppose that there does not exist z with |z| = 1
and f(z) = z. Then, applying the Rouché’s theorem to f(z) — z and z as in the previous
problem, we see that f(z) = z still has a unique solution in B(0;1). If f(0) = 0, and if
there exists z € B(0;1) \ {0} such that f(z) = z, then by Schwarz lemma, we know that
f(z) = z for all z € B(0;1). Otherwise, we cannot conclude anything for sure. For example,
if f(z) = 2", then it has a unique solution in B(0;1), but if f(z) = (22 4+ 1)/2, then it has
no solution in B(0;1). O

Problem 3. Prove the following Lemma: If (S5, d) is a metric space then

_d(s,t)
pls:t) = 1+ d(s,t)

is also a metric on S. A set is open in (S, d) iff it is open in (S, u); a sequence is a Cauchy
sequence in (9, d) iff it is a Cauchy sequence in (S, ).



Proof. u(s,t) = 0 iff d(s,t) = 0 which happens iff s = t. Clearly, u(s,t) = u(t,s) and
(s, t) >0 for all s,t € S. Let s1, 89,53 €S. Let a =d(s1, 82),b =d(s1,3) and ¢ = d(s3, $2).
Then b < a+c¢ < a+c+ac, where the first inequality is due to the triangle inequality applied
tod. Sol+b<1+a+c+ac=(14a)(l+c). Again by the triangle inequality, we have
a < b+c, 80 a—c < b. Combining there two inequalities, we have (a—c)(14b) < b(14a)(1+c),
which upon rearranging gives,

a  c < b
l1+4a 1+c¢c— 1+0b

Putting back the values of a, b, ¢ in terms of d(.,.), we have

:u(sb 52) S M(Sb 33) + /L(Sg, 32)

for all sy, s9, 83 € S. This proves the triangle inequality. Hence, y is a metric on S.

Now, let U be open in (S,d). Let € U. Then there exists € > 0 such that By(x;¢) C U. So,
for all y € S such that d(y,z) < ¢,y € U. Now, note that if u(y,z) = 11(5(’;)@ < 14z, then
d(y,z) < e. So, for all y € S such that u(y,z) <e/(1+¢€),y € U. Since x € U was arbitrary,
U is open in (S, u). Now, let V' be open in (S, u). Let x € U. Then there exists 1 > ¢ > 0

such that B, (z;e) C V. So, for all y € S such that u(y,z) < €,y € V. Now, note that if

d(y,z) = 1f2y(;)x) < 1%, then pu(y, ) < e. So, for ally € S such that d(y,z) < e/(1—¢),y € V.
Since x € V' was arbitrary, V' is open in (.5, d).

Now, let us define the function i : (S,d) — (S,u) where i(z) = « for all x € S. Then
w(i(z),i(y)) < d(x,y) for all z,y € S, and hence 7 is Lipschitz, and so uniformly continuous.
This implies that if {z,,} is a Cauchy sequence in (S, d), it is still a Cauchy sequence in (.S, p).
Now, let {z,} be a Cauchy sequence in (S, ut). Let € > 0. Then there exists N € N such that
(T, Tm) < 5 for all n,m > N. But this implies that d(w,,x,,) < € for all n,m > N. So

{z,} is Cauchy in (S, d). O

Problem 4. Suppose {f,} is a sequence in C(G,) which converges to f and {z,} is a
sequence in G which converges to a point z in G. Show lim f,(z,) = f(2).

Proof. Since f,, converges to f in C(G,(), f, converges to f uniformly on any compact
subset of G. Let K = {z,|n € N} U {z}. Then K is compact. Hence f,, — f uniformly on
K. Let € > 0. Then there exists Ny € N such that d(f.(y), f(y)) < €/2 for all n > N; and
for all y € K. Since f is continuous, there exists No € N such that d(f(z,), f(z)) < €/2 for
all n > N,. Then, for all n > max(Ny, Ns),

d(fn(zn), f(2)) < d(falzn), f(zn)) +d(f(z0), f(2)) <€
So, lim f,,(2,) = f(2). O

Problem 5. (Dini’s Theorem) Consider C(G,R) and suppose that {f,} is a sequence
in C(G,R) which is monotonically increasing (i.e., f,(z) < faot1(2) for all z in G) and
lim f,,(2) = f(2) for all z in G where f € C(G,R). Show that f, — f.



Proof. Replacing f,, with f— f,,, we can assume WLOG that f = 0 and {f,,} is monotonically
decreasing. Let K C G be compact. Also, note that f,, > 0 for alln > 1 and lim f,,(z) = 0 for
all z € G. Fix e > 0. Let 2z € K. Choose N(z) € N such that f,(z9) < €/2 for all n > N(z).
Choose 0(29) > 0 such that |fx)(2) — fneo)(20)] < €/2 for all z € B(z;8(2)). Then, we
have fy(.)(2) < € for all z € B(z;6(2)). Since the f,,’s are monotonically decreasing, this
implies that f,(z) < € for all z € B(z0;d(z)) and for all n > N(z). Since K is compact,
there exists finitely many z;’s, say, for 1 < i < r such that K C U]_;B(z;;0(z;)). Let
N = max{N(z;) : 1 <i < r}. Then, for all n > N, f,(2) < eforall z € K. So f, = 0
uniformly in K. Since K is an arbitrary compact subset in G, this implies that f, — 0 in
C(G,R). O

Problem 6. (a) Let f be analytic on B(0; R) and let f(z) = >~ a,z" for |z| < R. If
fu(z) = Y h_ axz”®, show that f,, — f in C(G;C).
(b) Let G = ann(0;0, R) and let f be analytic on G with Laurent series development f(z) =
S capz™ Put f,(2) =37, axz® and show that f, — f in C(G;C).
Proof. (a) Let K C B(0; R) be compact. Then there exists r < R such that K C B(0;r).
Since r is less than the radius of convergence of this power series, by Theorem 1.3(c) of
Chapter III, we see that f, — f uniformly on B(0;7), and hence obviously on K. Since K
is an arbitrary compact subset of G, this implies that f, — f in C(G;C).
(b) Let K C ann(0;0, R) be compact. Then there exists 0 < 7 < ro < R such that K C
ann(0;71,72). Let fr4(2) = > i ganz®. Let fi(2) = > 07 janz™ and f_(2) =Y o0 a2
Then, by Theorem 1.11 in Chapter V, f,+ — f4 uniformly on ann(0;7,72), and hence in
K. Note that f, = f- + fo+. So f, = f— + f+ = f uniformly on K. Since K is an arbitrary
compact subset of GG, this implies that f, — f in C(G;C).
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