Solutions: Homework 3

February 7, 2020

Problem 1. Suppose f is analytic on $\bar{B}(0 ; 1)$ and satisfies $|f(z)|<1$ for $|z|=1$. Find the number of solutions (counting multiplicities) of the equation $f(z)=z^{n}$ where n is an integer larger than or equal to 1 .

Proof. Let $g(z)=f(z)-z^{n}$ for all $z \in \bar{B}(0 ; 1)$, and let $h(z)=z^{n}$. Then since $|f(z)|<1$ for $|z|=1, g$ has no zeroes or poles on the unit circle. Obviously, h also has no poles or zeroes on the unit circle. Note that, for $|z|=1$,

$$
|g(z)+h(z)|=|f(z)|<1=\left|z^{n}\right|<|h(z)|+|g(z)|
$$

Then, by Rouché's theorem, $Z_{g}-P_{g}=Z_{h}-P_{h}$. Since g and h are analytic on $\bar{B}(0 ; 1)$, $P_{g}=P_{h}=0$. Hence $Z_{g}=Z_{h}=n$, since h has a zero of multiplicity n at 0 and has no other zeroes. So, the equation $f(z)=z^{n}$ has n solutions, counting multiplicities.

Problem 2. Let f be analytic in a neighbourhood of $D=\bar{B}(0 ; 1)$. If $|f(z)|<1$ for $|z|=1$, show that there is a unique z with $|z|<1$ and $f(z)=z$. If $|f(z)| \leq 1$ for $|z|=1$, what can you say?

Proof. By the problem above, the equation $f(z)=z$ has exactly one solution in $B(0 ; 1)$. Now, suppose that $|f(z)| \leq 1$ for $|z|=1$. Suppose that there does not exist z with $|z|=1$ and $f(z)=z$. Then, applying the Rouché's theorem to $f(z)-z$ and z as in the previous problem, we see that $f(z)=z$ still has a unique solution in $B(0 ; 1)$. If $f(0)=0$, and if there exists $z \in B(0 ; 1) \backslash\{0\}$ such that $f(z)=z$, then by Schwarz lemma, we know that $f(z)=z$ for all $z \in B(0 ; 1)$. Otherwise, we cannot conclude anything for sure. For example, if $f(z)=z^{n}$, then it has a unique solution in $B(0 ; 1)$, but if $f(z)=\left(z^{2}+1\right) / 2$, then it has no solution in $B(0 ; 1)$.

Problem 3. Prove the following Lemma: If (S, d) is a metric space then

$$
\mu(s, t)=\frac{d(s, t)}{1+d(s, t)}
$$

is also a metric on S. A set is open in (S, d) iff it is open in (S, μ); a sequence is a Cauchy sequence in (S, d) iff it is a Cauchy sequence in (S, μ).

Proof. $\mu(s, t)=0$ iff $d(s, t)=0$ which happens iff $s=t$. Clearly, $\mu(s, t)=\mu(t, s)$ and $\mu(s, t) \geq 0$ for all $s, t \in S$. Let $s_{1}, s_{2}, s_{3} \in S$. Let $a=d\left(s_{1}, s_{2}\right), b=d\left(s_{1}, s_{3}\right)$ and $c=d\left(s_{3}, s_{2}\right)$. Then $b \leq a+c \leq a+c+a c$, where the first inequality is due to the triangle inequality applied to d. So $1+b \leq 1+a+c+a c=(1+a)(1+c)$. Again by the triangle inequality, we have $a \leq b+c$, so $a-c \leq b$. Combining there two inequalities, we have $(a-c)(1+b) \leq b(1+a)(1+c)$, which upon rearranging gives,

$$
\frac{a}{1+a}-\frac{c}{1+c} \leq \frac{b}{1+b}
$$

Putting back the values of a, b, c in terms of $d(.,$.$) , we have$

$$
\mu\left(s_{1}, s_{2}\right) \leq \mu\left(s_{1}, s_{3}\right)+\mu\left(s_{3}, s_{2}\right)
$$

for all $s_{1}, s_{2}, s_{3} \in S$. This proves the triangle inequality. Hence, μ is a metric on S.
Now, let U be open in (S, d). Let $x \in U$. Then there exists $\epsilon>0$ such that $B_{d}(x ; \epsilon) \subset U$. So, for all $y \in S$ such that $d(y, x)<\epsilon, y \in U$. Now, note that if $\mu(y, x)=\frac{d(y, x)}{1+d(y, x)}<\frac{\epsilon}{1+\epsilon}$, then $d(y, x)<\epsilon$. So, for all $y \in S$ such that $\mu(y, x)<\epsilon /(1+\epsilon), y \in U$. Since $x \in U$ was arbitrary, U is open in (S, μ). Now, let V be open in (S, μ). Let $x \in U$. Then there exists $1>\epsilon>0$ such that $B_{\mu}(x ; \epsilon) \subset V$. So, for all $y \in S$ such that $\mu(y, x)<\epsilon, y \in V$. Now, note that if $d(y, x)=\frac{\mu(y, x)}{1-\mu(y, x)}<\frac{\epsilon}{1-\epsilon}$, then $\mu(y, x)<\epsilon$. So, for all $y \in S$ such that $d(y, x)<\epsilon /(1-\epsilon), y \in V$. Since $x \in V$ was arbitrary, V is open in (S, d).
Now, let us define the function $i:(S, d) \rightarrow(S, \mu)$ where $i(x)=x$ for all $x \in S$. Then $\mu(i(x), i(y)) \leq d(x, y)$ for all $x, y \in S$, and hence i is Lipschitz, and so uniformly continuous. This implies that if $\left\{x_{n}\right\}$ is a Cauchy sequence in (S, d), it is still a Cauchy sequence in (S, μ). Now, let $\left\{x_{n}\right\}$ be a Cauchy sequence in (S, μ). Let $\epsilon>0$. Then there exists $N \in \mathbb{N}$ such that $\mu\left(x_{n}, x_{m}\right)<\frac{\epsilon}{1+\epsilon}$ for all $n, m \geq N$. But this implies that $d\left(x_{n}, x_{m}\right)<\epsilon$ for all $n, m \geq N$. So $\left\{x_{n}\right\}$ is Cauchy in (S, d).

Problem 4. Suppose $\left\{f_{n}\right\}$ is a sequence in $C(G, \Omega)$ which converges to f and $\left\{z_{n}\right\}$ is a sequence in G which converges to a point z in G. Show $\lim f_{n}\left(z_{n}\right)=f(z)$.

Proof. Since f_{n} converges to f in $C(G, \Omega), f_{n}$ converges to f uniformly on any compact subset of G. Let $K=\left\{z_{n} \mid n \in \mathbb{N}\right\} \cup\{z\}$. Then K is compact. Hence $f_{n} \rightarrow f$ uniformly on K. Let $\epsilon>0$. Then there exists $N_{1} \in \mathbb{N}$ such that $d\left(f_{n}(y), f(y)\right)<\epsilon / 2$ for all $n \geq N_{1}$ and for all $y \in K$. Since f is continuous, there exists $N_{2} \in \mathbb{N}$ such that $d\left(f\left(z_{n}\right), f(z)\right)<\epsilon / 2$ for all $n \geq N_{2}$. Then, for all $n \geq \max \left(N_{1}, N_{2}\right)$,

$$
d\left(f_{n}\left(z_{n}\right), f(z)\right) \leq d\left(f_{n}\left(z_{n}\right), f\left(z_{n}\right)\right)+d\left(f\left(z_{n}\right), f(z)\right)<\epsilon
$$

So, $\lim f_{n}\left(z_{n}\right)=f(z)$.
Problem 5. (Dini's Theorem) Consider $C(G, \mathbb{R})$ and suppose that $\left\{f_{n}\right\}$ is a sequence in $C(G, \mathbb{R})$ which is monotonically increasing (i.e., $f_{n}(z) \leq f_{n+1}(z)$ for all z in G) and $\lim f_{n}(z)=f(z)$ for all z in G where $f \in C(G, \mathbb{R})$. Show that $f_{n} \rightarrow f$.

Proof. Replacing f_{n} with $f-f_{n}$, we can assume WLOG that $f \equiv 0$ and $\left\{f_{n}\right\}$ is monotonically decreasing. Let $K \subset G$ be compact. Also, note that $f_{n} \geq 0$ for all $n \geq 1$ and $\lim f_{n}(z)=0$ for all $z \in G$. Fix $\epsilon>0$. Let $z_{0} \in K$. Choose $N\left(z_{0}\right) \in \mathbb{N}$ such that $f_{n}\left(z_{0}\right)<\epsilon / 2$ for all $n \geq N\left(z_{0}\right)$. Choose $\delta\left(z_{0}\right)>0$ such that $\left|f_{N\left(z_{0}\right)}(z)-f_{N\left(z_{0}\right)}\left(z_{0}\right)\right|<\epsilon / 2$ for all $z \in B\left(z_{0} ; \delta\left(z_{0}\right)\right)$. Then, we have $f_{N\left(z_{0}\right)}(z)<\epsilon$ for all $z \in B\left(z_{0} ; \delta\left(z_{0}\right)\right)$. Since the f_{n} 's are monotonically decreasing, this implies that $f_{n}(z)<\epsilon$ for all $z \in B\left(z_{0} ; \delta\left(z_{0}\right)\right)$ and for all $n \geq N\left(z_{0}\right)$. Since K is compact, there exists finitely many z_{i} 's, say, for $1 \leq i \leq r$ such that $K \subset \cup_{i=1}^{r} B\left(z_{i} ; \delta\left(z_{i}\right)\right)$. Let $N=\max \left\{N\left(z_{i}\right): 1 \leq i \leq r\right\}$. Then, for all $n \geq N, f_{n}(z)<\epsilon$ for all $z \in K$. So $f_{n} \rightarrow 0$ uniformly in K. Since K is an arbitrary compact subset in G, this implies that $f_{n} \rightarrow 0$ in $C(G, \mathbb{R})$.

Problem 6. (a) Let f be analytic on $B(0 ; R)$ and let $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ for $|z|<R$. If $f_{n}(z)=\sum_{k=0}^{n} a_{k} z^{k}$, show that $f_{n} \rightarrow f$ in $C(G ; \mathbb{C})$.
(b) Let $G=\operatorname{ann}(0 ; 0, R)$ and let f be analytic on G with Laurent series development $f(z)=$ $\sum_{n=-\infty}^{\infty} a_{n} z^{n}$. Put $f_{n}(z)=\sum_{k=-\infty}^{n} a_{k} z^{k}$ and show that $f_{n} \rightarrow f$ in $C(G ; \mathbb{C})$.

Proof. (a) Let $K \subset B(0 ; R)$ be compact. Then there exists $r<R$ such that $K \subset \bar{B}(0 ; r)$. Since r is less than the radius of convergence of this power series, by Theorem 1.3(c) of Chapter III, we see that $f_{n} \rightarrow f$ uniformly on $\bar{B}(0 ; r)$, and hence obviously on K. Since K is an arbitrary compact subset of G, this implies that $f_{n} \rightarrow f$ in $C(G ; \mathbb{C})$.
(b) Let $K \subset \operatorname{ann}(0 ; 0, R)$ be compact. Then there exists $0<r_{1}<r_{2}<R$ such that $K \subset$ $\overline{\operatorname{ann}}\left(0 ; r_{1}, r_{2}\right)$. Let $f_{n,+}(z)=\sum_{k=0}^{n} a_{k} z^{k}$. Let $f_{+}(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ and $f_{-}(z)=\sum_{n=1}^{\infty} a_{-n} z^{-n}$. Then, by Theorem 1.11 in Chapter $\mathrm{V}, f_{n,+} \rightarrow f_{+}$uniformly on $\overline{\operatorname{ann}}\left(0 ; r_{1}, r_{2}\right)$, and hence in K. Note that $f_{n}=f_{-}+f_{n,+}$. So $f_{n} \rightarrow f_{-}+f_{+}=f$ uniformly on K. Since K is an arbitrary compact subset of G, this implies that $f_{n} \rightarrow f$ in $C(G ; \mathbb{C})$.

