
Solutions: Homework 3

February 7, 2020

Problem 1. Suppose f is analytic on B(0; 1) and satisfies |f(z)| < 1 for |z| = 1. Find the
number of solutions (counting multiplicities) of the equation f(z) = zn where n is an integer
larger than or equal to 1.

Proof. Let g(z) = f(z)− zn for all z ∈ B(0; 1), and let h(z) = zn. Then since |f(z)| < 1 for
|z| = 1, g has no zeroes or poles on the unit circle. Obviously, h also has no poles or zeroes
on the unit circle. Note that, for |z| = 1,

|g(z) + h(z)| = |f(z)| < 1 = |zn| < |h(z)|+ |g(z)|

Then, by Rouché’s theorem, Zg − Pg = Zh − Ph. Since g and h are analytic on B(0; 1),
Pg = Ph = 0. Hence Zg = Zh = n, since h has a zero of multiplicity n at 0 and has no other
zeroes. So, the equation f(z) = zn has n solutions, counting multiplicities.

Problem 2. Let f be analytic in a neighbourhood of D = B(0; 1). If |f(z)| < 1 for |z| = 1,
show that there is a unique z with |z| < 1 and f(z) = z. If |f(z)| ≤ 1 for |z| = 1, what can
you say?

Proof. By the problem above, the equation f(z) = z has exactly one solution in B(0; 1).
Now, suppose that |f(z)| ≤ 1 for |z| = 1. Suppose that there does not exist z with |z| = 1
and f(z) = z. Then, applying the Rouché’s theorem to f(z) − z and z as in the previous
problem, we see that f(z) = z still has a unique solution in B(0; 1). If f(0) = 0, and if
there exists z ∈ B(0; 1) \ {0} such that f(z) = z, then by Schwarz lemma, we know that
f(z) = z for all z ∈ B(0; 1). Otherwise, we cannot conclude anything for sure. For example,
if f(z) = zn, then it has a unique solution in B(0; 1), but if f(z) = (z2 + 1)/2, then it has
no solution in B(0; 1).

Problem 3. Prove the following Lemma: If (S, d) is a metric space then

µ(s, t) =
d(s, t)

1 + d(s, t)

is also a metric on S. A set is open in (S, d) iff it is open in (S, µ); a sequence is a Cauchy
sequence in (S, d) iff it is a Cauchy sequence in (S, µ).
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Proof. µ(s, t) = 0 iff d(s, t) = 0 which happens iff s = t. Clearly, µ(s, t) = µ(t, s) and
µ(s, t) ≥ 0 for all s, t ∈ S. Let s1, s2, s3 ∈ S. Let a = d(s1, s2), b = d(s1, s3) and c = d(s3, s2).
Then b ≤ a+c ≤ a+c+ac, where the first inequality is due to the triangle inequality applied
to d. So 1 + b ≤ 1 + a + c + ac = (1 + a)(1 + c). Again by the triangle inequality, we have
a ≤ b+c, so a−c ≤ b. Combining there two inequalities, we have (a−c)(1+b) ≤ b(1+a)(1+c),
which upon rearranging gives,

a

1 + a
− c

1 + c
≤ b

1 + b

Putting back the values of a, b, c in terms of d(., .), we have

µ(s1, s2) ≤ µ(s1, s3) + µ(s3, s2)

for all s1, s2, s3 ∈ S. This proves the triangle inequality. Hence, µ is a metric on S.
Now, let U be open in (S, d). Let x ∈ U. Then there exists ε > 0 such that Bd(x; ε) ⊂ U. So,

for all y ∈ S such that d(y, x) < ε, y ∈ U. Now, note that if µ(y, x) = d(y,x)
1+d(y,x)

< ε
1+ε

, then

d(y, x) < ε. So, for all y ∈ S such that µ(y, x) < ε/(1 + ε), y ∈ U. Since x ∈ U was arbitrary,
U is open in (S, µ). Now, let V be open in (S, µ). Let x ∈ U. Then there exists 1 > ε > 0
such that Bµ(x; ε) ⊂ V. So, for all y ∈ S such that µ(y, x) < ε, y ∈ V. Now, note that if

d(y, x) = µ(y,x)
1−µ(y,x) <

ε
1−ε , then µ(y, x) < ε. So, for all y ∈ S such that d(y, x) < ε/(1−ε), y ∈ V.

Since x ∈ V was arbitrary, V is open in (S, d).
Now, let us define the function i : (S, d) → (S, µ) where i(x) = x for all x ∈ S. Then
µ(i(x), i(y)) ≤ d(x, y) for all x, y ∈ S, and hence i is Lipschitz, and so uniformly continuous.
This implies that if {xn} is a Cauchy sequence in (S, d), it is still a Cauchy sequence in (S, µ).
Now, let {xn} be a Cauchy sequence in (S, µ). Let ε > 0. Then there exists N ∈ N such that
µ(xn, xm) < ε

1+ε
for all n,m ≥ N. But this implies that d(xn, xm) < ε for all n,m ≥ N. So

{xn} is Cauchy in (S, d).

Problem 4. Suppose {fn} is a sequence in C(G,Ω) which converges to f and {zn} is a
sequence in G which converges to a point z in G. Show lim fn(zn) = f(z).

Proof. Since fn converges to f in C(G,Ω), fn converges to f uniformly on any compact
subset of G. Let K = {zn|n ∈ N} ∪ {z}. Then K is compact. Hence fn → f uniformly on
K. Let ε > 0. Then there exists N1 ∈ N such that d(fn(y), f(y)) < ε/2 for all n ≥ N1 and
for all y ∈ K. Since f is continuous, there exists N2 ∈ N such that d(f(zn), f(z)) < ε/2 for
all n ≥ N2. Then, for all n ≥ max(N1, N2),

d(fn(zn), f(z)) ≤ d(fn(zn), f(zn)) + d(f(zn), f(z)) < ε

So, lim fn(zn) = f(z).

Problem 5. (Dini’s Theorem) Consider C(G,R) and suppose that {fn} is a sequence
in C(G,R) which is monotonically increasing (i.e., fn(z) ≤ fn+1(z) for all z in G) and
lim fn(z) = f(z) for all z in G where f ∈ C(G,R). Show that fn → f.
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Proof. Replacing fn with f−fn, we can assume WLOG that f ≡ 0 and {fn} is monotonically
decreasing. Let K ⊂ G be compact. Also, note that fn ≥ 0 for all n ≥ 1 and lim fn(z) = 0 for
all z ∈ G. Fix ε > 0. Let z0 ∈ K. Choose N(z0) ∈ N such that fn(z0) < ε/2 for all n ≥ N(z0).
Choose δ(z0) > 0 such that |fN(z0)(z) − fN(z0)(z0)| < ε/2 for all z ∈ B(z0; δ(z0)). Then, we
have fN(z0)(z) < ε for all z ∈ B(z0; δ(z0)). Since the fn’s are monotonically decreasing, this
implies that fn(z) < ε for all z ∈ B(z0; δ(z0)) and for all n ≥ N(z0). Since K is compact,
there exists finitely many zi’s, say, for 1 ≤ i ≤ r such that K ⊂ ∪ri=1B(zi; δ(zi)). Let
N = max{N(zi) : 1 ≤ i ≤ r}. Then, for all n ≥ N, fn(z) < ε for all z ∈ K. So fn → 0
uniformly in K. Since K is an arbitrary compact subset in G, this implies that fn → 0 in
C(G,R).

Problem 6. (a) Let f be analytic on B(0;R) and let f(z) =
∑∞

n=0 anz
n for |z| < R. If

fn(z) =
∑n

k=0 akz
k, show that fn → f in C(G;C).

(b) Let G = ann(0; 0, R) and let f be analytic on G with Laurent series development f(z) =∑∞
n=−∞ anz

n. Put fn(z) =
∑n

k=−∞ akz
k and show that fn → f in C(G;C).

Proof. (a) Let K ⊂ B(0;R) be compact. Then there exists r < R such that K ⊂ B(0; r).
Since r is less than the radius of convergence of this power series, by Theorem 1.3(c) of
Chapter III, we see that fn → f uniformly on B(0; r), and hence obviously on K. Since K
is an arbitrary compact subset of G, this implies that fn → f in C(G;C).
(b) Let K ⊂ ann(0; 0, R) be compact. Then there exists 0 < r1 < r2 < R such that K ⊂
ann(0; r1, r2). Let fn,+(z) =

∑n
k=0 akz

k. Let f+(z) =
∑∞

n=0 anz
n and f−(z) =

∑∞
n=1 a−nz

−n.
Then, by Theorem 1.11 in Chapter V, fn,+ → f+ uniformly on ann(0; r1, r2), and hence in
K. Note that fn = f− + fn,+. So fn → f− + f+ = f uniformly on K. Since K is an arbitrary
compact subset of G, this implies that fn → f in C(G;C).
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