Solutions: Homework 4

February 10, 2020

Problem 1. Prove Vitali's Theorem: If G is a region and $\left\{f_{n}\right\} \in H(G)$ is locally bounded and $f \in H(G)$ that has the property that $A=\left\{z \in G: \lim f_{n}(z)=f(z)\right\}$ has a limit point in G then $f_{n} \rightarrow f$.

Proof. Suppose that $\left\{f_{n}\right\}$ is locally bounded. By Montel's theorem, $\left\{f_{n}\right\}$ is normal. Now suppose that $f_{n} \nrightarrow f$. Then there exists $\epsilon>0$ and a subsequence $\left\{f_{n_{k}}\right\}$ such that $\rho\left(f_{n_{k}}, f\right)>\epsilon$ for all n_{k}. Since $\left\{f_{n}\right\}$ is normal, there exists a subsequence $\left\{f_{n_{k_{l}}}\right\}$ of $\left\{f_{n_{k}}\right\}$ such that $f_{n_{k_{l}}} \rightarrow g$, as $n_{k_{l}} \rightarrow \infty$ for some $g \in H(G)$. So, $\lim f_{n_{k_{l}}}(z)=g(z)$ for all $z \in G$. In particular, $g(z)=f(z)$ for all $z \in A$. Since A has a limit point in G, this implies that $f \equiv g$. So, $f_{n_{k_{l}}} \rightarrow f$ in $H(G)$. This contradicts the fact that $\rho\left(f_{n_{k_{l}}}, f\right)>\epsilon$ for all $n_{k_{l}}$. So, $f_{n} \rightarrow f$ in $\mathrm{H}(\mathrm{G})$.

Problem 2. Show that for a set $\mathscr{F} \subset H(G)$ the following are equivalent:
(a) \mathscr{F} is normal;
(b) For every $\epsilon>0$ there is a number $c>0$ such that $\{c f: f \in \mathscr{F}\} \subset B(0 ; \epsilon)$ (here $B(0 ; \epsilon)$ is the ball in $H(G)$ with center at 0 and radius ϵ).

Proof. (a) $\Longrightarrow(b)$: Suppose \mathscr{F} is normal. Then, by Montel's theorem, it is locally bounded. Let $G=\cup_{n=1}^{\infty} K_{n}$ where K_{n} 's are compact, and $K_{n} \subset\left(K_{n+1}\right)^{o}$. Let ρ_{n} and ρ be the metric on $C(G, \mathbb{C})$ associated to these compact subsets of G. Then $\rho_{n}(f, 0)=\sup \left\{|f(z)|: z \in K_{n}\right\}$ and $\rho(f, 0)=\sum_{n=1}^{\infty}\left(\frac{1}{2}\right)^{n} \frac{\rho_{n}(f, 0)}{1+\rho_{n}(f, 0)}$. Since \mathscr{F} is locally bounded, by Lemma 2.8 , there exists $M_{n} \geq 0$ such that $|f(z)| \leq M_{n}$ for all $f \in \mathscr{F}$ and $z \in K_{n}$. Now, let $c>0$. Then $\rho_{n}(c f, 0) \leq c M_{n}$ for all $f \in \mathscr{F}$. Let $\epsilon>0$ be fixed.

$$
\rho(c f, 0)=\sum_{n=1}^{\infty}\left(\frac{1}{2}\right)^{n} \frac{\rho_{n}(f, 0)}{1+\rho_{n}(f, 0)} \leq \sum_{n=1}^{\infty}\left(\frac{1}{2}\right)^{n} \frac{c M_{n}}{1+c M_{n}}
$$

Let $N \in \mathbb{N}$ be such that $\frac{1}{2^{N}}=\sum_{n=N+1}^{\infty}\left(\frac{1}{2}\right)^{n} \leq \frac{\epsilon}{2}$. Choose $c>0$ such that

$$
c<\frac{\epsilon}{2\left(\sum_{n=1}^{N} \frac{M_{n}}{2^{n}}\right)}
$$

Then, for all $f \in \mathscr{F}$, we have

$$
\rho(c f, 0) \leq \sum_{n=1}^{N}\left(\frac{1}{2}\right)^{n} \frac{c M_{n}}{1+c M_{n}}+\sum_{n=N+1}^{\infty}\left(\frac{1}{2}\right)^{n} \frac{c M_{n}}{1+c M_{n}} \leq c \sum_{n=1}^{\infty}\left(\frac{1}{2}\right)^{n} M_{n}+\sum_{n=1}^{\infty}\left(\frac{1}{2}\right)^{n}<\epsilon
$$

This proves (b).
(b) \Longrightarrow (a): Conversely, suppose (b) holds. Let $K \subset G$ be a compact set. Let K_{n} 's be as above. Since $\left(K_{n}\right)^{o}$'s form an open cover of G, there exists $N \in \mathbb{N}$ such that $K \subset K_{N}$. By (b), there exists $c>0$ such that $\rho(c f, 0)<\frac{1}{2^{N+1}}$ for all $f \in \mathscr{F}$. Now,

$$
\left(\frac{1}{2}\right)^{N} \frac{\rho_{N}(c f, 0)}{1+\rho_{N}(c f, 0)} \leq \rho(c f, 0)<\frac{1}{2^{N+1}}
$$

for all $f \in \mathscr{F}$. This implies that $\rho_{N}(c f, 0)<1$ for all $f \in \mathscr{F}$. This implies that $\sup \{|c f(z)|$: $\left.z \in K_{N}\right\} \leq \sup \left\{|c f(z)|: z \in K_{N}\right\}<1$, and hence $|f(z)| \leq 1 / c$ for all $f \in \mathscr{F}$ and $z \in K$. Since K is an arbitrary compact subset of G, by Lemma 2.8 , this proves that \mathscr{F} is locally bounded, and hence normal, by Montel's theorem. This proves (a).

Problem 3. Let $D=B(0 ; 1)$ and for $0<r<1$ let $\gamma_{r}(t)=r e^{2 \pi i t}, 0 \leq t \leq 1$. Show that a sequence $\left\{f_{n}\right\}$ in $H(D)$ converges to f iff $\int_{\gamma_{r}}\left|f(z)-f_{n}(z) \| d z\right| \rightarrow 0$ as $n \rightarrow \infty$ for each $r, 0<r<1$.

Proof. Suppose that $f_{n} \rightarrow f$ in $H(D)$. Since γ_{r} is a compact subset of $D, f_{n} \rightarrow f$ uniformly on γ_{r}. This implies that $\int_{\gamma_{r}}\left|f(z)-f_{n}(z)\right||d z| \rightarrow 0$ as $n \rightarrow \infty$ for each $r, 0<r<1$. Conversely, suppose that $\int_{\gamma_{r}}\left|f(z)-f_{n}(z) \| d z\right| \rightarrow 0$ as $n \rightarrow \infty$ for each $r, 0<r<1$. Let $K \subset D$ be compact. So, there exists $r<1$ such that $K \subset B(0 ; r)$. Let $r<R<1$. Then

$$
f(z)=\frac{1}{2 \pi i} \int_{\gamma_{R}} \frac{f(w)}{w-z} d w, \quad f_{n}(z)=\frac{1}{2 \pi i} \int_{\gamma_{R}} \frac{f_{n}(w)}{w-z} d w
$$

for all $z \in B(0 ; R)$ and in particular, for all $z \in K$. So, for all $z \in K$,

$$
\left|f_{n}(z)-f(z)\right|=\frac{1}{2 \pi}\left|\int_{\gamma_{R}} \frac{f_{n}(w)-f(w)}{w-z} d w\right| \leq \frac{1}{2 \pi} \int_{\gamma_{R}} \frac{\left|f_{n}(w)-f(w)\right|}{|w-z|} d|w|
$$

Note that since $K \subset B(0 ; r)$, we have $|w-z|>R-r$ for all $w \in \gamma_{R}$ and all $z \in K$. This implies that, for all $z \in K$,

$$
\left|f_{n}(z)-f(z)\right| \leq \frac{1}{2 \pi(R-r)} \int_{\gamma_{R}}\left|f_{n}(w)-f(w)\right| d|w|
$$

But the RHS above converges to 0 as $n \rightarrow \infty$. So $f_{n} \rightarrow f$ uniformly on K. Since K was an arbitrary compact subset of D, this proves that $f_{n} \rightarrow f$ in $H(D)$.

Problem 4. Let $\left\{f_{n}\right\} \subset H(G)$ be a sequence of one-one functions which converge to f. If G is a region, show that either f is one-one or f is a constant function.

Proof. Suppose that f is not a constant function. Let $z_{0}, z_{1} \in G$ be such that $f\left(z_{0}\right)=f\left(z_{1}\right)$. Let $g_{n}=f_{n}-f\left(z_{0}\right)$ and $g=f-f\left(z_{0}\right)$. Then $g_{n} \rightarrow g$ in $H(G) . g \not \equiv 0$. Note that $g\left(z_{0}\right)=$ $g\left(z_{1}\right)=0$. Choose r small enough such that $\bar{B}\left(z_{0} ; r\right) \cap \bar{B}\left(z_{1} ; r\right)=\emptyset$ and $B\left(z_{0} ; r\right) \cup B\left(z_{1} ; r\right) \subset G$, and such that g has no zeroes on $\left|z-z_{0}\right|=r$ and $\left|z-z_{1}\right|=r$. Then, by Hurwitz's theorem, there exists $N \gg 0$ such that g and g_{N} have the same number of zeroes in $B\left(z_{0} ; r\right)$ and $B\left(z_{1} ; r\right)$ each. So, g_{N} has at least one zero in $B\left(z_{0} ; r\right)$ and $B\left(z_{1} ; r\right)$ each. This implies that g_{N} cannot be one-one, a contradiction. Hence g is one-one, if it is not $\equiv 0$. Hence f is either one-one or a constant function.

Problem 5. Suppose that $\left\{f_{n}\right\}$ is a sequence in $H(G), f$ is a non-constant function, and $f_{n} \rightarrow f$ in $H(G)$. Let $a \in G$ and $\alpha=f(a)$; show that there is a sequence $\left\{a_{n}\right\}$ in G such that: (i) $a=\lim a_{n}$; (ii) $f_{n}\left(a_{n}\right)=\alpha$ for sufficiently large n.

Proof. WLOG we can assume that $\alpha=0$. Then $f(a)=0$. Choose $R>0$ such that $\bar{B}(a ; R) \subset$ G and $f(z) \neq 0$ for $|z-a|=R$. By Hurwitz's theorem, choose $N_{1} \in \mathbb{N}$ such that f_{n} has at least one zero in $B(a ; R)$ for all $n \geq N_{1}$. Choose any one of these zeroes and denote it by $a_{N_{1}}$. Similarly, for $i \geq 1$, choose $N_{i+1}>N_{i}$ such that f_{n} has at least one zero in $B(a ; R /(i+1))$ for all $n \geq N_{i+1}$. And as we did earlier, pick any zero and call it $a_{N_{i+1}}$. Now, for $n \geq N_{1}$, define $a_{n}=a_{N_{i}}$ for $N_{i} \leq i<N_{i+1}$. Then $f_{n}\left(a_{n}\right)=0$ for all $n \geq N_{1}$ and $a_{n} \rightarrow a$.

Problem 6. Let f be analytic on $G=\{z: \operatorname{Re} z>0\}$, one-one, with $\operatorname{Re} f(z)>0$ for all z in G, and $f(a)=a$ for some real number a. Show that $\left|f^{\prime}(a)\right| \leq 1$.

Proof. By the Riemann mapping theorem, as G is simply connected, there exists an analytic bijective function $g: G \rightarrow B(0 ; 1)$ such that $g(a)=0$ and $g^{\prime}(a)>0$. So, $g^{-1}: B(0 ; 1) \rightarrow G$ is analytic. Let $h=g \circ f \circ g^{-1}: B(0 ; 1) \rightarrow B(0 ; 1)$. Also, $h(0)=g\left(f\left(g^{-1}(0)\right)\right)=g(f(a))=$ $g(a)=0$. So, by Schwarz's lemma, $\left|h^{\prime}(0)\right| \leq 1$. But

$$
h^{\prime}(0)=g^{\prime}\left(f\left(g^{-1}(0)\right)\right) f^{\prime}\left(g^{-1}(0)\right)\left(g^{-1}\right)^{\prime}(0)=\frac{g^{\prime}(a) f^{\prime}(a)}{g^{\prime}\left(g^{-1}(0)\right)}=f^{\prime}(a)
$$

So, we have $\left|f^{\prime}(a)\right| \leq 1$.
Problem 7. Let $r_{1}, r_{2}, R_{1}, R_{2}$ be positive numbers such that $R_{1} / r_{1}=R_{2} / r_{2}$; show that $\operatorname{ann}\left(0 ; r_{1}, R_{1}\right)$ and $\operatorname{ann}\left(0 ; r_{2}, R_{2}\right)$ are conformally equivalent.

Proof. Let $G_{1}=\operatorname{ann}\left(0 ; r_{1}, R_{1}\right)$ and $G_{2}=\operatorname{ann}\left(0 ; r_{2}, R_{2}\right)$. Define $f: G_{1} \rightarrow G_{2}$ by $f(z)=\frac{r_{2}}{r_{1}} z$. Note that f is well-defined, because if $r_{1}<|z|<R_{1}$, then $r_{2}<\left|\frac{r_{2}}{r_{1}} z\right|<\frac{R_{1} r_{2}}{r_{1}}=R_{2}$. Clearly f is bijective and analytic, hence G_{1} is conformally equivalent to G_{2}.

