
Solutions: Homework 4

February 10, 2020

Problem 1. Prove Vitali’s Theorem: If G is a region and {fn} ∈ H(G) is locally bounded
and f ∈ H(G) that has the property that A = {z ∈ G : lim fn(z) = f(z)} has a limit point
in G then fn → f.

Proof. Suppose that {fn} is locally bounded. By Montel’s theorem, {fn} is normal. Now
suppose that fn 6→ f. Then there exists ε > 0 and a subsequence {fnk

} such that ρ(fnk
, f) > ε

for all nk. Since {fn} is normal, there exists a subsequence {fnkl
} of {fnk

} such that fnkl
→ g,

as nkl →∞ for some g ∈ H(G). So, lim fnkl
(z) = g(z) for all z ∈ G. In particular, g(z) = f(z)

for all z ∈ A. Since A has a limit point in G, this implies that f ≡ g. So, fnkl
→ f in H(G).

This contradicts the fact that ρ(fnkl
, f) > ε for all nkl . So, fn → f in H(G).

Problem 2. Show that for a set F ⊂ H(G) the following are equivalent:
(a) F is normal;
(b) For every ε > 0 there is a number c > 0 such that {cf : f ∈ F} ⊂ B(0; ε) (here B(0; ε)
is the ball in H(G) with center at 0 and radius ε).

Proof. (a) =⇒ (b): Suppose F is normal. Then, by Montel’s theorem, it is locally bounded.
Let G = ∪∞n=1Kn where Kn’s are compact, and Kn ⊂ (Kn+1)

o. Let ρn and ρ be the metric on
C(G,C) associated to these compact subsets of G. Then ρn(f, 0) = sup{|f(z)| : z ∈ Kn} and

ρ(f, 0) =
∑∞

n=1(
1
2
)n ρn(f,0)

1+ρn(f,0)
. Since F is locally bounded, by Lemma 2.8, there exists Mn ≥ 0

such that |f(z)| ≤ Mn for all f ∈ F and z ∈ Kn. Now, let c > 0. Then ρn(cf, 0) ≤ cMn for
all f ∈ F . Let ε > 0 be fixed.

ρ(cf, 0) =
∞∑
n=1

(
1

2

)n
ρn(f, 0)

1 + ρn(f, 0)
≤

∞∑
n=1

(
1

2

)n
cMn

1 + cMn

Let N ∈ N be such that 1
2N

=
∑∞

n=N+1(
1
2
)n ≤ ε

2
. Choose c > 0 such that

c <
ε

2(
∑N

n=1
Mn

2n
)

Then, for all f ∈ F , we have

ρ(cf, 0) ≤
N∑
n=1

(
1

2

)n
cMn

1 + cMn

+
∞∑

n=N+1

(
1

2

)n
cMn

1 + cMn

≤ c
∞∑
n=1

(
1

2

)n
Mn +

∞∑
n=1

(
1

2

)n
< ε

1



This proves (b).
(b) =⇒ (a): Conversely, suppose (b) holds. Let K ⊂ G be a compact set. Let Kn’s be as
above. Since (Kn)o’s form an open cover of G, there exists N ∈ N such that K ⊂ KN . By
(b), there exists c > 0 such that ρ(cf, 0) < 1

2N+1 for all f ∈ F . Now,(
1

2

)N
ρN(cf, 0)

1 + ρN(cf, 0)
≤ ρ(cf, 0) <

1

2N+1

for all f ∈ F . This implies that ρN(cf, 0) < 1 for all f ∈ F . This implies that sup{|cf(z)| :
z ∈ KN} ≤ sup{|cf(z)| : z ∈ KN} < 1, and hence |f(z)| ≤ 1/c for all f ∈ F and z ∈ K.
Since K is an arbitrary compact subset of G, by Lemma 2.8, this proves that F is locally
bounded, and hence normal, by Montel’s theorem. This proves (a).

Problem 3. Let D = B(0; 1) and for 0 < r < 1 let γr(t) = re2πit, 0 ≤ t ≤ 1. Show that
a sequence {fn} in H(D) converges to f iff

∫
γr
|f(z) − fn(z)||dz| → 0 as n → ∞ for each

r, 0 < r < 1.

Proof. Suppose that fn → f in H(D). Since γr is a compact subset of D, fn → f uniformly
on γr. This implies that

∫
γr
|f(z)−fn(z)||dz| → 0 as n→∞ for each r, 0 < r < 1. Conversely,

suppose that
∫
γr
|f(z) − fn(z)||dz| → 0 as n → ∞ for each r, 0 < r < 1. Let K ⊂ D be

compact. So, there exists r < 1 such that K ⊂ B(0; r). Let r < R < 1. Then

f(z) =
1

2πi

∫
γR

f(w)

w − z
dw, fn(z) =

1

2πi

∫
γR

fn(w)

w − z
dw

for all z ∈ B(0;R) and in particular, for all z ∈ K. So, for all z ∈ K,

|fn(z)− f(z)| = 1

2π

∣∣∣∣ ∫
γR

fn(w)− f(w)

w − z
dw

∣∣∣∣ ≤ 1

2π

∫
γR

|fn(w)− f(w)|
|w − z|

d|w|

Note that since K ⊂ B(0; r), we have |w − z| > R − r for all w ∈ γR and all z ∈ K. This
implies that, for all z ∈ K,

|fn(z)− f(z)| ≤ 1

2π(R− r)

∫
γR

|fn(w)− f(w)|d|w|

But the RHS above converges to 0 as n → ∞. So fn → f uniformly on K. Since K was an
arbitrary compact subset of D, this proves that fn → f in H(D).

Problem 4. Let {fn} ⊂ H(G) be a sequence of one-one functions which converge to f. If
G is a region, show that either f is one-one or f is a constant function.

Proof. Suppose that f is not a constant function. Let z0, z1 ∈ G be such that f(z0) = f(z1).
Let gn = fn − f(z0) and g = f − f(z0). Then gn → g in H(G). g 6≡ 0. Note that g(z0) =
g(z1) = 0. Choose r small enough such that B(z0; r)∩B(z1; r) = ∅ and B(z0; r)∪B(z1; r) ⊂ G,
and such that g has no zeroes on |z − z0| = r and |z − z1| = r. Then, by Hurwitz’s theorem,
there exists N >> 0 such that g and gN have the same number of zeroes in B(z0; r) and
B(z1; r) each. So, gN has at least one zero in B(z0; r) and B(z1; r) each. This implies that
gN cannot be one-one, a contradiction. Hence g is one-one, if it is not ≡ 0. Hence f is either
one-one or a constant function.
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Problem 5. Suppose that {fn} is a sequence in H(G), f is a non-constant function, and
fn → f in H(G). Let a ∈ G and α = f(a); show that there is a sequence {an} in G such
that: (i) a = lim an; (ii) fn(an) = α for sufficiently large n.

Proof. WLOG we can assume that α = 0. Then f(a) = 0. Choose R > 0 such that B(a;R) ⊂
G and f(z) 6= 0 for |z − a| = R. By Hurwitz’s theorem, choose N1 ∈ N such that fn has at
least one zero in B(a;R) for all n ≥ N1. Choose any one of these zeroes and denote it by aN1 .
Similarly, for i ≥ 1, choose Ni+1 > Ni such that fn has at least one zero in B(a;R/(i + 1))
for all n ≥ Ni+1. And as we did earlier, pick any zero and call it aNi+1

. Now, for n ≥ N1,
define an = aNi

for Ni ≤ i < Ni+1. Then fn(an) = 0 for all n ≥ N1 and an → a.

Problem 6. Let f be analytic on G = {z : Re z > 0}, one-one, with Re f(z) > 0 for all z
in G, and f(a) = a for some real number a. Show that |f ′(a)| ≤ 1.

Proof. By the Riemann mapping theorem, as G is simply connected, there exists an analytic
bijective function g : G → B(0; 1) such that g(a) = 0 and g′(a) > 0. So, g−1 : B(0; 1) → G
is analytic. Let h = g ◦ f ◦ g−1 : B(0; 1) → B(0; 1). Also, h(0) = g(f(g−1(0))) = g(f(a)) =
g(a) = 0. So, by Schwarz’s lemma, |h′(0)| ≤ 1. But

h′(0) = g′(f(g−1(0)))f ′(g−1(0))(g−1)′(0) =
g′(a)f ′(a)

g′(g−1(0))
= f ′(a)

So, we have |f ′(a)| ≤ 1.

Problem 7. Let r1, r2, R1, R2 be positive numbers such that R1/r1 = R2/r2; show that
ann(0; r1, R1) and ann(0; r2, R2) are conformally equivalent.

Proof. Let G1 = ann(0; r1, R1) and G2 = ann(0; r2, R2). Define f : G1 → G2 by f(z) = r2
r1
z.

Note that f is well-defined, because if r1 < |z| < R1, then r2 < | r2r1 z| <
R1r2
r1

= R2. Clearly f
is bijective and analytic, hence G1 is conformally equivalent to G2.
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