Solutions: Homework 6

February 24, 2020

Problem 1. Let f and g be analytic functions on a region G and show that there are analytic functions f_{1}, g_{1}, and h on G such that $f(z)=h(z) f_{1}(z)$ and $g(z)=h(z) g_{1}(z)$ for all z in G; and f_{1} and g_{1} have no common zeros.

Proof. Suppose that $f=g \equiv 0$. Then take $h \equiv 0$ and $f_{1}=g_{1} \equiv 1$. Now, assume that not both f and g are $\equiv 0$. Let $\left\{a_{j}\right\}=Z(f) \cap Z(g)$. Then $\left\{a_{j}\right\}$ has no limit points in G. Let $m_{f, j}$ and $m_{g, j}$ denote the multiplicities of the zeros at a_{j} for f and g respectively. Let $m_{j}=\min \left\{m_{f, j}, m_{g, j}\right\}$. By Theorem 5.15, there is an analytic function h defined on G whose only zeros are at the point a_{j} and a_{j} is a zero of h of multiplicity m_{j}. Let $f_{1}=f / h$ and $g_{1}=g / h$. Then f_{1} and g_{1} are analytic on $G \backslash\left\{a_{j}\right\}$. Note that since a_{j} 's are zeros of f and g with multiplicity \geq that of h, f_{1} and g_{1} have removable singularities at all a_{j} 's. So, we define f_{1} and g_{1} on G and they are analytic on G. Now, we know that f_{1} and g_{1} have no zeros outside $\left\{a_{j}\right\}$. For $z=a_{j}$, suppose that $f_{1}\left(a_{j}\right)=g_{1}\left(a_{j}\right)=0$. But this implies that $m_{j}-m_{f, j}>0$ and $m_{j}-m_{g, j}>0$, which is not possible by the definition of m_{j}. So, none of the a_{j} 's can be a common zero of both f_{1} and g_{1}. So, f_{1} and g_{1} have no common zeros and $f=h f_{1}$ and $g=h g_{1}$.

Problem 2. (a) Let $0<|a|<1$ and $|z| \leq r<1$; show that

$$
\left|\frac{a+|a| z}{(1-\bar{a} z) a}\right| \leq \frac{1+r}{1-r}
$$

(b) Let $\left\{a_{n}\right\}$ be a sequence of complex numbers with $0<\left|a_{n}\right|<1$ and $\sum\left(1-\left|a_{n}\right|\right)<\infty$. Show that the infinite product

$$
B(z)=\prod_{n=1}^{\infty} \frac{\left|a_{n}\right|}{a_{n}}\left(\frac{a_{n}-z}{1-\overline{a_{n}} z}\right)
$$

converges in $H(B(0 ; 1))$ and that $|B(z)| \leq 1$. What are the zeros of B ?
(c) Find a sequence $\left\{a_{n}\right\}$ in $B(0 ; 1)$ such that $\sum\left(1-\left|a_{n}\right|\right)<\infty$ and every number $e^{i \theta}$ is a limit point of $\left\{a_{n}\right\}$.

Proof. (a)

$$
\left|\frac{a+|a| z}{a}\right| \leq 1+|z| \leq 1+r \text { and }|1-\bar{a} z| \geq 1-|\bar{a}||z| \geq 1-r
$$

Combining the two, we get the inequality.
(b) Let

$$
B_{n}=\prod_{k=1}^{n} \frac{\left|a_{k}\right|}{a_{k}}\left(\frac{a_{n}-z}{1-\overline{a_{n}} z}\right)
$$

Then $B_{n} \in H(B(0 ; 1))$ and being a finite product of Möbius transformations and complex numbers of absolute value 1, we have $\left|B_{n}(z)\right|<1$ for all $z \in B(0 ; 1)$. For $n \geq 1$.

$$
\begin{aligned}
\mid B_{n}(z)- & B_{n-1}(z)\left|=\left|B_{n-1}(z)\right| \cdot\right| \frac{\left|a_{n}\right|}{a_{n}}\left(\frac{a_{n}-z}{1-\overline{a_{n}} z}\right)-1\left|<\left|\frac{\left|a_{n}\right|}{a_{n}}\left(\frac{a_{n}-z}{1-\overline{a_{n}} z}\right)-1\right|\right. \\
& =\left|\frac{a_{n}\left(\left|a_{n}\right|-1\right)+\left|a_{n}\right| z\left(\left|a_{n}\right|-1\right)}{a_{n}\left(1-\overline{a_{n}} z\right)}\right|=\left(1-\left|a_{n}\right|\right)\left|\frac{a_{n}+\left|a_{n}\right| z}{\left(1-\overline{a_{n}} z\right) a_{n}}\right|
\end{aligned}
$$

Let $K \subset B(0 ; 1)$. Then there exists $r<1$ such that $K \subset \bar{B}(0 ; r)$. Then, for $z \in K$, we have $|z| \leq r$, and hence by part (a), we have

$$
\left|B_{n}(z)-B_{n-1}(z)\right|<\left(\frac{1+r}{1-r}\right)\left(1-\left|a_{n}\right|\right)
$$

for all $z \in K$. Let $\epsilon>0$. Since $\sum\left(1-\left|a_{n}\right|\right)<\infty$, there exists $N \in \mathbb{N}$ such that for all $n>m \geq N$,

$$
\sum_{k=m+1}^{n}\left(1-\left|a_{k}\right|\right)<\epsilon\left(\frac{1-r}{1+r}\right)
$$

So, for all $z \in K$ and for $n>m \geq N$, we have

$$
\left|B_{n}(z)-B_{m}(z)\right| \leq \sum_{k=m+1}^{n}\left|B_{k}(z)-B_{k-1}(z)\right|<\left(\frac{1+r}{1-r}\right) \sum_{k=m+1}^{n}\left(1-\left|a_{n}\right|\right)<\epsilon
$$

This implies that $B_{n} \rightarrow B$ uniformly in K. Since K is an arbitrary compact subset of $B(0 ; 1)$, we have $B_{n} \rightarrow B$ in $H(B(0 ; 1))$. Now, note that $\left|B_{n}(z)\right|<1$ for all $z \in B(0 ; 1)$. Hence $|B(z)| \leq 1$ for all $z \in B(0 ; 1)$. Now, we know that for $n \geq N, B_{n}\left(a_{N}\right)=0$. Hence $B\left(a_{n}\right)=0$ for all $n \geq 1$. Note that $B(0)=\prod\left|a_{n}\right| \neq 0$ by Proposition 5.2 and Proposition 5.4. So, $B \not \equiv 0$. So, B has only countably many zeros in $B(0 ; 1)$. Now suppose $B(a)=0$ for some $a \notin\left\{a_{n}\right\}$. Then there exists $1>R>|a|$ such that B has no zeros on $|z|=R$. Then, by Hurwitz's theorem, there exists $m \in \mathbb{N}$ such that B and B_{m} have the same number of zeros in $B(0 ; R)$. This implies that a cannot be a zero of B. So, the zeros of B are $\left\{a_{n}\right\}$.
Note: An equivalent way of doing this problem would be by a direct application of Theorem 5.9.
(c) Let $\left\{r_{1}, r_{2}, \ldots\right\}$ be an enumeration of the rationals in $[0,1)$. We define a sequence in $B(0 ; 1)$ as follows:

$$
a_{n}=\left(1-\frac{1}{2^{n}}\right) e^{2 \pi i r_{n}}
$$

Then

$$
\sum_{n=1}^{\infty}\left(1-\left|a_{n}\right|\right)=\sum_{n=1}^{\infty} \frac{1}{2^{n}}=1<\infty
$$

Let $0 \leq \theta<2 \pi$. Let $\epsilon>0$. Then, for $n>1-\log _{2}(\epsilon)$, we have

$$
\frac{1}{2^{n}}<\frac{\epsilon}{2}
$$

Since $\left\{2 \pi r_{1}, 2 \pi r_{2}, \ldots\right\}$ is dense in $[0,2 \pi)$, the interval $\left(\theta-\frac{\epsilon}{2}, \theta+\frac{\epsilon}{2}\right)$ contains infinitely many elements from $\left\{2 \pi r_{1}, 2 \pi r_{2}, \ldots\right\}$. Let $N>1-\log _{2}(\epsilon)$ be such that $2 \pi r_{N} \in\left(\theta-\frac{\epsilon}{2}, \theta+\frac{\epsilon}{2}\right)$. Then we have

$$
\left|e^{i \theta}-a_{N}\right| \leq\left|e^{i \theta}-e^{2 \pi i r_{N}}\right|+\left|e^{2 \pi i r_{N}}-a_{N}\right|=\left|e^{i\left(\theta-2 \pi r_{N}\right)}-1\right|+\frac{1}{2^{N}}
$$

Now we use the fact that $\left|e^{i x}-1\right| \leq|x|$ for all $x \in \mathbb{R}$. So, we have

$$
\left|e^{i \theta}-a_{N}\right| \leq\left|\theta-2 \pi r_{N}\right|+\frac{1}{2^{N}}<\epsilon
$$

This proves that every number $e^{i \theta}$ is a limit point of $\left\{a_{n}\right\}$.
Problem 3. Show that $\prod_{n=2}^{\infty}\left(1-\frac{1}{n^{2}}\right)=\frac{1}{2}$.
Proof. Let

$$
a_{n}=\prod_{k=2}^{n}\left(1-\frac{1}{k^{2}}\right)=\frac{\prod_{k=2}^{n}(k-1) \prod_{k=2}^{n}(k+1)}{\prod_{k=2}^{n} k^{2}}
$$

Note that the first product in the numerator is $(n-1)$! while the second one is $3.4 \ldots(n+1)=$ $(n+1)!/ 2$. The product in the denominator is $(n!)^{2}$. Hence

$$
a_{n}=\frac{(n-1)!(n+1)!}{2 . n!\cdot n!}=\frac{n+1}{2 n}
$$

Hence

$$
\prod_{n=2}^{\infty}\left(1-\frac{1}{n^{2}}\right)=\lim _{n \rightarrow \infty} \frac{n+1}{2 n}=\frac{1}{2}
$$

