
Solutions: Homework 6

February 24, 2020

Problem 1. Let f and g be analytic functions on a region G and show that there are
analytic functions f1, g1, and h on G such that f(z) = h(z)f1(z) and g(z) = h(z)g1(z) for all
z in G; and f1 and g1 have no common zeros.

Proof. Suppose that f = g ≡ 0. Then take h ≡ 0 and f1 = g1 ≡ 1. Now, assume that
not both f and g are ≡ 0. Let {aj} = Z(f) ∩ Z(g). Then {aj} has no limit points in G.
Let mf,j and mg,j denote the multiplicities of the zeros at aj for f and g respectively. Let
mj = min{mf,j,mg,j}. By Theorem 5.15, there is an analytic function h defined on G whose
only zeros are at the point aj and aj is a zero of h of multiplicity mj. Let f1 = f/h and
g1 = g/h. Then f1 and g1 are analytic on G \ {aj}. Note that since aj’s are zeros of f and
g with multiplicity ≥ that of h, f1 and g1 have removable singularities at all aj’s. So, we
define f1 and g1 on G and they are analytic on G. Now, we know that f1 and g1 have no
zeros outside {aj}. For z = aj, suppose that f1(aj) = g1(aj) = 0. But this implies that
mj −mf,j > 0 and mj −mg,j > 0, which is not possible by the definition of mj. So, none of
the aj’s can be a common zero of both f1 and g1. So, f1 and g1 have no common zeros and
f = hf1 and g = hg1.

Problem 2. (a) Let 0 < |a| < 1 and |z| ≤ r < 1; show that∣∣∣∣ a+ |a|z
(1− az)a

∣∣∣∣ ≤ 1 + r

1− r

(b) Let {an} be a sequence of complex numbers with 0 < |an| < 1 and
∑

(1 − |an|) < ∞.
Show that the infinite product

B(z) =
∞∏
n=1

|an|
an

(
an − z
1− anz

)
converges in H(B(0; 1)) and that |B(z)| ≤ 1. What are the zeros of B?
(c) Find a sequence {an} in B(0; 1) such that

∑
(1 − |an|) < ∞ and every number eiθ is a

limit point of {an}.

Proof. (a) ∣∣∣∣a+ |a|z
a

∣∣∣∣ ≤ 1 + |z| ≤ 1 + r and |1− az| ≥ 1− |a||z| ≥ 1− r
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Combining the two, we get the inequality.
(b) Let

Bn =
n∏
k=1

|ak|
ak

(
an − z
1− anz

)
Then Bn ∈ H(B(0; 1)) and being a finite product of Möbius transformations and complex
numbers of absolute value 1, we have |Bn(z)| < 1 for all z ∈ B(0; 1). For n ≥ 1.

|Bn(z)−Bn−1(z)| = |Bn−1(z)|.
∣∣∣∣ |an|an

(
an − z
1− anz

)
− 1

∣∣∣∣ < ∣∣∣∣ |an|an
(
an − z
1− anz

)
− 1

∣∣∣∣
=

∣∣∣∣an(|an| − 1) + |an|z(|an| − 1)

an(1− anz)

∣∣∣∣ = (1− |an|)
∣∣∣∣ an + |an|z
(1− anz)an

∣∣∣∣
Let K ⊂ B(0; 1). Then there exists r < 1 such that K ⊂ B(0; r). Then, for z ∈ K, we have
|z| ≤ r, and hence by part (a), we have

|Bn(z)−Bn−1(z)| <
(

1 + r

1− r

)
(1− |an|)

for all z ∈ K. Let ε > 0. Since
∑

(1 − |an|) < ∞, there exists N ∈ N such that for all
n > m ≥ N,

n∑
k=m+1

(1− |ak|) < ε

(
1− r
1 + r

)
So, for all z ∈ K and for n > m ≥ N, we have

|Bn(z)−Bm(z)| ≤
n∑

k=m+1

|Bk(z)−Bk−1(z)| <
(

1 + r

1− r

) n∑
k=m+1

(1− |an|) < ε

This implies that Bn → B uniformly in K. Since K is an arbitrary compact subset of
B(0; 1), we have Bn → B in H(B(0; 1)). Now, note that |Bn(z)| < 1 for all z ∈ B(0; 1).
Hence |B(z)| ≤ 1 for all z ∈ B(0; 1). Now, we know that for n ≥ N,Bn(aN) = 0. Hence
B(an) = 0 for all n ≥ 1. Note that B(0) =

∏
|an| 6= 0 by Proposition 5.2 and Proposition

5.4. So, B 6≡ 0. So, B has only countably many zeros in B(0; 1). Now suppose B(a) = 0 for
some a 6∈ {an}. Then there exists 1 > R > |a| such that B has no zeros on |z| = R. Then,
by Hurwitz’s theorem, there exists m ∈ N such that B and Bm have the same number of
zeros in B(0;R). This implies that a cannot be a zero of B. So, the zeros of B are {an}.
Note: An equivalent way of doing this problem would be by a direct application of Theorem
5.9.
(c) Let {r1, r2, ...} be an enumeration of the rationals in [0, 1). We define a sequence in B(0; 1)
as follows:

an =

(
1− 1

2n

)
e2πirn

Then
∞∑
n=1

(1− |an|) =
∞∑
n=1

1

2n
= 1 <∞
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Let 0 ≤ θ < 2π. Let ε > 0. Then, for n > 1− log2(ε), we have

1

2n
<
ε

2

Since {2πr1, 2πr2, ...} is dense in [0, 2π), the interval (θ − ε
2
, θ + ε

2
) contains infinitely many

elements from {2πr1, 2πr2, ...}. Let N > 1− log2(ε) be such that 2πrN ∈ (θ− ε
2
, θ+ ε

2
). Then

we have

|eiθ − aN | ≤ |eiθ − e2πirN |+ |e2πirN − aN | = |ei(θ−2πrN ) − 1|+ 1

2N

Now we use the fact that |eix − 1| ≤ |x| for all x ∈ R. So, we have

|eiθ − aN | ≤ |θ − 2πrN |+
1

2N
< ε

This proves that every number eiθ is a limit point of {an}.

Problem 3. Show that
∏∞

n=2

(
1− 1

n2

)
= 1

2
.

Proof. Let

an =
n∏
k=2

(
1− 1

k2

)
=

∏n
k=2(k − 1)

∏n
k=2(k + 1)∏n

k=2 k
2

Note that the first product in the numerator is (n−1)! while the second one is 3.4....(n+1) =
(n+ 1)!/2. The product in the denominator is (n!)2. Hence

an =
(n− 1)!(n+ 1)!

2.n!.n!
=
n+ 1

2n

Hence
∞∏
n=2

(
1− 1

n2

)
= lim

n→∞

n+ 1

2n
=

1

2
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