HW8 Problems

1. Let $f=\frac{1}{(z-1)(z-5)}$.
(a). Prove that there is a sequence of rational functions $R_{n}(z)$ whose poles can only occur at 2 and 6 such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup _{3 \leq|z| \leq 4}\left|f(z)-R_{n}(z)\right|=0 \tag{1}
\end{equation*}
$$

(b). Does there exist a sequence of rational functions $R_{n}(z)$ whose poles can only occur at 6 such that (1) holds? Justify your answer.
2. Let $G=\left\{z \in \mathbb{C}:|z|<1\right.$ and $\left.\left|z-\frac{1}{3}\right|>\frac{2}{3}\right\}$; and K be the closure of $G: K=\{z \in$ $\mathbb{C}:|z| \leq 1$ and $\left.\left|z-\frac{1}{3}\right| \geq \frac{2}{3}\right\}$. Let $A(K)$ be the space of continuous functions on K that are analytic on G equipped with the uniform norm on K. For the purposes of this problem, a Laurent polynomial is a function of the form $\sum_{n=-N}^{N} a_{n} z^{n}$. Determine whether the following are true or false. Justify your answer.
(a). The set of polynomials is dense in $H(G)$.
(b). The set of polynomials is dense in $A(K)$.
(c). If f is analytic on a neighborhood of K, then f can be uniformly approximated on K by Laurent polynomials.

