The metric on \(C(G, \mathbb{C}) \)

Defn. If \(G \) is an open set in \(\mathbb{C} \) and \(\mathbb{C} \) is equipped with standard metric \(d(z, w) = |z - w| \).

we denote

\[
C(G, \mathbb{C}) = \left\{ \text{all continuous function } f : G \to \mathbb{C} \right\}
\]

Q: How to define a metric on \(C(G, \mathbb{C}) \)?

Recall: A metric \(d \) on a set \(X \): \(\forall x, y, z \)

1. \(d(x, y) \geq 0 \)
2. \(d(x, y) = 0 \iff x = y \)
3. \(d(x, y) = d(y, x) \)
4. \(d(x, z) \leq d(x, y) + d(y, z) \).

Naive idea:

define

\[
d(f, g) = \sup \left\{ |f(z) - g(z)| : z \in G \right\}
\]

for \(f, g \in C(G, \mathbb{C}) \).

But \(d(f, g) \) may be \(\infty \) in this way

A better way:

Defn. exhaustion sequence of \(G \)

A sequence of compact subset \(\{ K_n \}_{n=1}^{\infty} \) of \(G \)

is called an exhaustion sequence of compact set for \(G \)
is called an exhaustion sequence of compact set for G if

(1) $K_1 \subset K_2 \subset K_3 \subset K_4 \subset \cdots$

(2) Every compact subset K of G is contained in some K_n. In particular,$$igcup_{n=1}^{\infty} K_n = G$$

Existence of Exhaustion sequence

Proposition 1.2: Let $G \subset \mathbb{C}$ be open. Set

$$K_n = \{ z \in G : d(z, \mathbb{C} - G) \geq \frac{1}{n} \}$$

Then (1) (2) holds.

Moreover,

(3) Every component of $\mathbb{C} - K_n$ contains a component of $\mathbb{C} - G$.

\[\textbf{Pf:} \] P143 in the book

Now for each K_n, we can define a metric on $C(K_n, \mathbb{C})$:

$$P_n(f, g) = \sup \left\{ d(f(z), g(z)) : z \in K_n \right\}$$

for $f, g \in C(K_n, \mathbb{C})$.

Q: How to use this to define a metric on $C(G, \mathbb{C})$.

Observation: $d_n(f, g) = \frac{P_n(f, g)}{1 + P_n(f, g)}$ is also a metric on $C(K_n, \mathbb{C})$.
Pf:
1. \(d_n(f, g) \geq 0 \)
2. \(d_n(f, g) = 0 \iff p_n(f, g) = 0 \iff f = g \)
3. \(d_n(f, g) = d_n(g, f) \)
4. **Triangle inequality.**
 \[
 \frac{p_n(f, g)}{1 + p_n(f, g)} \leq \frac{p_n(f, h)}{1 + p_n(f, h)} + \frac{p_n(h, g)}{1 + p_n(h, g)}
 \]

We write \(a = p_n(f, g), \ b = p_n(f, h), \ c = p_n(h, g) \).

Since \(p_n \) is a metric \(\Rightarrow a \leq b + c \).

Now set \(\psi(x) = \frac{x}{1+x} \), we need to show

\[
\psi(a) \leq \psi(b) + \psi(c).
\]

Note \(\psi(x) = 1 - \frac{1}{1+x}, \ \psi'(x) = \frac{1}{(1+x)^2}, \ \psi''(x) = -2 \frac{1}{(1+x)^3} \)

\(\Rightarrow \psi \uparrow \psi' \) on \(x \in (0, +\infty) \).

Then \(\psi(a) \leq \psi(b+c) \).

We fix \(c > 0 \) and set \(\psi(b) = \psi(b) + \psi(c) - \psi(b+c) \).

Note \(\psi(0) = 0 \)

\(\psi'(b) = \psi'(b) - \psi'(b+c) \geq 0 \) as \(\psi' \uparrow \)

\(\Rightarrow \psi(b) \geq 0 \) for all \(b \geq 0 \). Thus

\[
\psi(b) + \psi(c) \geq \psi(b+c)
\]

\(\Rightarrow \psi(a) \leq \psi(b) + \psi(c) \).
Metric on $C(G, \mathbb{C})$:

Define for $f, g \in C(G, \mathbb{C})$

$$p_n(f, g) = \sup \left\{ d(f(z), g(z)) : z \in K_n \right\}$$

$$p(f, g) = \sum_{n=1}^{\infty} \frac{p_n(f, g)}{(n+1)^2}$$

Then

Proposition 1.6: $(C(G, \mathbb{C}), p)$ is a metric space.

pf: Page 144 in the book

Proposition 1.10:

A sequence $f_n \to f$ in $(C(G, \mathbb{C}), p)$

(i.e. $p(f_n, f) \to 0$) \iff

f_n converges to f on every compact subset of G.

Idea: When $p(f_j, f) = \sum_{n=1}^{\infty} \left(\frac{1}{n+1}\right)^n \frac{p_n(f_j, f)}{1 + p_n(f_j, f)} \to 0$

On every K_n, $\frac{p_n(f_j, f)}{1 + p_n(f_j, f)} \to 0 \Rightarrow p_n(f_j, f) \to 0$

Proposition 1.12: $C(G, \mathbb{C})$ is a complete metric space under p.

Recall: “complete” means every Cauchy sequence $\{f_j\}$ has a limit f in $C(G, \mathbb{C})$.

Idea of pf: If $\{f_j\}$ is Cauchy in $(C(G, \mathbb{C}), p)$, then

$$p_n(f_j, f_k) \to 0 \text{ as } j, k \to \infty$$

That is, $\{f_j\}$ is Cauchy on every K_n
That is, \(\{f_j\} \) is Cauchy on every \(K_n \).

Thus \(\{f_j\} \) has a pointwise limit \(f \) on \(K_n \).

Moreover, \(f_j \to f \) on \(K \) uniformly.

Since the uniform limit of continuous functions is continuous. Thus \(f \in C(G, \mathbb{C}) \).

Defn. A set \(F \subseteq C(G, \mathbb{C}) \) is normal if each sequence in \(F \) has a subsequence which converges to a function \(f \) in \(C(G, \mathbb{C}) \).

Proposition 1.15. A set \(F \subseteq C(G, \mathbb{C}) \) is normal if and only if its closure is compact.

Proposition 1.16. A set \(F \subseteq C(G, \mathbb{C}) \) is normal if and only if for every compact set \(K \subseteq G \) and \(\delta > 0 \) there are functions \(f_1, \ldots, f_n \) in \(F \) such that for \(f \in F \), there \(\exists \) some \(1 \leq k \leq n \) st

\[
\sup \{d(f_1(z), f_k(z)) : z \in K\} < \delta.
\]

Idea of Pf: Use the compactness of \(\overline{F} \).

Defn. A set \(F \subseteq C(G, \mathbb{C}) \) is equicontinuous at a point \(z_0 \in G \) if for every \(\varepsilon > 0 \), there \(\exists \delta > 0 \) s.t. for \(|z - z_0| < \delta \),

\[
d(f(z), f(z_0)) < \varepsilon.
\]
\[d(f(z), f(z_0)) < \varepsilon \]
for every \(f \in F \).

2. \(F \) is equicontinuous over a set \(E \subseteq \mathbb{C} \) if
for every \(\varepsilon > 0 \) there \(\exists \delta > 0 \) s.t.
for \(z \) and \(z' \) in \(E \) and \(|z - z'| < \delta \),
\[d(f(z), f(z')) < \varepsilon \]
for all \(f \in F \).

Proposition 1.22. Suppose \(F \subseteq C(G, \mathbb{C}) \) is equicontinuous at
every pt of \(G \) then \(F \) is equicontinuous over
every compact subset of \(G \).

Arzela-Ascoli Thm. A set \(F \subseteq C(G, \mathbb{C}) \) is normal iff
the following two conditions are satisfied:
(a) for each \(z \in G \), \(\exists M > 0 \) s.t.
\[|f(z)| \leq M \] for all \(f \in F \).
(b) \(F \) is equicontinuous at each pt of \(G \)
\[\iff F \] is equicontinuous over every compact subset \(K \subseteq G \).

Def: We will only prove the \(\subseteq \) direction. Suppose \(F \) satisfies (a) and (b). We will show \(F \) is normal.

Let \(\{ z_n \}_{n=1}^{\infty} \) be the sequence of all pts in \(G \) with
rational real and imaginary parts. Then
\(z_n \in G \) for all \(n \).
rational real and imaginary parts. Then
\{2n\} is dense in \(\mathbb{G} \). Let \(\{f_k\} \) be a sequence in \(\mathbb{F} \).

We find a subsequence \(f^{(1)} \) of \(\{f_k\} \)

\[f^{(1)}_j : f_{k_1}, f_{k_2}, f_{k_3}, \ldots, f_{k_j} \ldots \text{ which converges at } Z_1. \]

Then we find a subsequence \(f^{(2)}_j \) of \(\{f^{(1)}_j\} \) s.t

\[f^{(2)}_j \text{ converges at } Z_2. \]

Inductively, we find a subsequence \(f^{(i)}_j \) of \(\{f^{(i-1)}_j\} \) s.t \(f^{(i)}_j \) converges at \(Z_i \). Then by diagonalization method, we can find a subsequence \(\{f_i\} \)

of \(\{f_k\} \) s.t

\[f^{(1)}, f^{(2)}, \ldots, \text{ converges at every } Z_n. \]

We will still call this subsequence \(\{f_k\} \).

Next we prove

Lemma: Fix a compact subset \(K \subset \mathbb{G} \).

Let \(\varepsilon > 0 \). \(\exists J > 0 \) s.t

\[k, j \geq J \Rightarrow \sup_{z \in K^j} d(z, f_j) < \varepsilon. \]

Proof: Write \(R = d(K, \mathbb{G} \setminus K) > 0 \)

Let \(K_1 = \{z \in \mathbb{G} : d(z, K) \leq \frac{R}{2} \} \)

Then \(K_1 \) is compact and

\[K \subset K_0 \subset K_1 \subset \mathbb{G}. \]

By assumption (b), \(\mathbb{F} \) is equicontinuous on \(K_1 \).
By assumption (b), \(f \) is equicontinuous on \(K_1 \).

Thus \(\exists \sigma > 0 \) with \(0 < \sigma < \frac{\varepsilon}{2} \) s.t.

\[
d(f(z_2), f(z_1)) < \frac{\varepsilon}{2}
\]

for all \(f \in F \) and \(z, z' \in K_1 \) with \(|z - z'| < \sigma \).

Let \(D = \{ z_n : z_n \in K_1 \} \).

If \(z \in K \) then \(\exists z_n \) with \(|z - z_n| < \sigma \). But \(\sigma < \frac{\varepsilon}{2} \)

\[
\Rightarrow d(z_n, K) < \frac{\varepsilon}{2}. \text{ Thus } z_n \in K_1.
\]

As \(z \) is arbitrary in \(K \), we have \(\{ B(w, \sigma) : w \in D \} \)

is an open cover of \(K \). As \(K \) is compact, \(\exists \) a

finite cover of \(K \), i.e., \(\exists w_1, \ldots, w_n \in D \) s.t

\[
K \subseteq \bigcup_{i=1}^{n} B(w_i, \sigma).
\]

Since \(\lim_{k \to \infty} f_k(w_i) \) exists for \(1 \leq i \leq n \), there \(\exists \sigma > 0 \)

s.t \(j, k \geq \sigma \Rightarrow d(f_k(w_i), f_j(w_i)) < \frac{\varepsilon}{3} \) for all

\(1 \leq i \leq n \).

Let \(z \) be an arbitrary pt in \(K \). Then \(\exists \) some

\(1 \leq i \leq n \) s.t \(z \in B(w_i, \sigma) \). Then

\[
k, j \geq \sigma \Rightarrow
\]

\[
d(f_k(z_2), f_j(z_2)) \leq d(f_k(z_2), f_k(w_i)) + d(f_k(w_i), f_j(w_i)) + d(f_j(w_i), f_j(z_2))
\]

\[
< \varepsilon.
\]

This proves the lemma.

By the lemma, \(\{ f_k \} \) has a pointwise limit \(f \) s.t

\(f_k \to f \) uniformly on \(K \). By proposition 1.10,
$f_k \to f$ uniformly on K. By proposition 1.10,

$f_k \to f$ in $C(K, \mathbb{C})$.