7.4 The Riemann Mapping Thm

Defn 4.1. A region G_1 is conformally equivalent to G_2 if there exists an analytic function $f : G_1 \to \mathbb{C}$ such that f is one-to-one and $f(G_1) = G_2$.

Remark: Conformal equivalence is an equivalence relation.

Ex. Let $G_1 = \mathbb{C} - \{z \in \mathbb{R} : z \leq 0\}$

$G_2 = \{z \in \mathbb{C} : \text{Re} z > 0\}$

Let $f(z) = \sqrt{z}$ the principal branch of the square root.

Thm 4.2 (Riemann Mapping Thm) Let G be a simply connected region with $G \neq \mathbb{C}$. Let $a \in G$. Then there exists a unique analytic function $f : G \to \mathbb{C}$ having the properties:

(a) $f(a) = 0$ and $f'(a) > 0$

(b) f is 1-1

(c) $f(G) = \{z : |z| < 1\}$

Proof: The uniqueness part is easy. If f, g both satisfy (a), (b), (c), then $f \circ g^{-1} : D \to D$ is analytic, 1-1, onto.
Also \(f \circ g^{-1}(0) = 0 \).

By Schwarz's lemma, \(f \circ g^{-1} = C \), where \(|C| = 1 \).

\[\Rightarrow f = C \circ g(z). \]

Differentiate at \(z = a \); \(\Rightarrow \)

\[f'(a) = C \circ g'(a). \]

Note \(f'(a) > 0, g'(a) > 0 \Rightarrow C = 1. \)

Thus \(f = g \).

Step 1: we first prove \(\exists \varphi \in H(G), 1-1 \) on \(G \), s.t

\[\varphi(G) \text{ is bdd}. \]

Note as \(G \neq \mathbb{C}, \exists b \in C \text{ s.t } b \notin G. \text{ Thus } h \equiv z - b \text{ never vanishes in } G. \text{ Recall on P84, Corollary 6.17.} \)

If \(G \) is simply connected, \(h \in H(G) \) and \(h(z) \neq 0, \forall z \in G, \) then \(\exists \hat{h} \in H(G) \text{ s.t } h = e^{\hat{h}}. \) Moreover, \(\hat{h} \) can be defined by \(e^{\hat{h}} = \log w. \) Hence

\[\sqrt{z - b} \text{ has a well-defined branch in } G. \]

Call it \(g(z) \). Note \(g \) is 1-1.

Moreover, write \(g(G) = E \) then \(0 \notin E \).

Claim: If \(w \in E, -w \notin E \).

Proof: Suppose \(w, -w \in E, \) then \(\exists z_1, z_2, \text{ s.t } w = \sqrt{z_1 - b}, -w = \sqrt{z_2 - b} \)

\[\Rightarrow \sqrt{z_1 - b} = \sqrt{z_2 - b} \Rightarrow z_1 - b = z_2 - b \]

\[\Rightarrow z_1 = z_2 \Rightarrow w = -w \Rightarrow w = 0 \]
\[\Rightarrow z_1 = z_2 \Rightarrow w = -w \Rightarrow w = 0 \]

This is a contradiction.

By open mapping thm. E is a region in C.

As \(a \in G \Rightarrow \text{gra} \) is an interior pt of E

\[\exists \delta > 0 \text{ s.t. } B(\text{gra}) ; \delta \subset E. \]

Thus \(B(-\text{gra}) ; \delta \subset C - E \Rightarrow \text{dist}(-\text{gra}, E) \geq \delta \)

Thus when \(z \in E \), we have \(|g(z) + \text{gra}| \geq \delta \).

Let \(\Psi(z) = \frac{1}{g(z) + \text{gra}} \)

Thus if \(z \in G \)

\[|\Psi(z)| \leq \frac{1}{\delta} \text{ Thus } \Psi(G) \text{ is bdd.} \]

Note: \(\Psi \) is 1-1, as \(g(z) \) is 1-1.

Step 2: Assume \(G \) is bdd.

To prove the existence,

Idea: Consider the family \(F \) of all analytic functions having properties (a), (b), and maps \(G \) to \(D \).

Then choose a special element \(f \) in \(F \) satisfies (c).

Let \(F = \{ f : f \in H(G), 1-1, \text{gra} = 0, f'(a) > 0, f(G) \subset 1D \} \).

Claim: \(F \neq \emptyset \).

Pf: Assume \(G \subset B(a; R) \) for some \(R > 0 \).

Let \(h(z) = \frac{z - a}{R} \). Then \(h \in F \).
Now fix \(r > 0 \) s.t. \(B(a; r) \subset G \). By Cauchy’s Estimate, we obtain for all \(f \in F \),

\[
\left| f'(a) \right| \leq \frac{1}{r} \sup \left\{ |f(z)| : z \in B(a; r) \right\} \leq \frac{1}{r}.
\]

Thus \(\{f'(a) : f \in F\} \) has an upper bound. \(\Rightarrow \)

\[
M = \sup \{f'(a) : f \in F\} < \infty. \text{ Note } M > 0.
\]

Next we will prove \(f_* \in F \) such that \(f'_*(a) = M \). Indeed, \(\exists \{f_n\} \subset F \) such that \(\lim_{n \to \infty} f'_n(a) = M \). But \(|f(z)| \leq 1 \) on \(G \) for all \(f \in F \). By Montel’s thm. we have

\(\{f_n\} \) has a convergent subsequence in \(H(G) \). We still call it \(\{f_n\} \). Write the limit as \(f_* \):

\[
f_n \to f_* \text{ in } H(G).
\]

We also have \(f'_n \to f'_* \text{ in } H(G) \). In particular,

\[
f'_*(a) = \lim_{n \to \infty} f'_n(a) = M > 0.
\]

As each \(f_n \) is 1-1, \(f_* \) constant, by what we proved last time,

\(f_* \) is also 1-1.

Moreover, \(f_*' (a) = \lim_{n \to \infty} f_n'(a) = 0 \).

Claim: \(|f'_*(z)| < 1 \) for all \(z \in G \).

Proof: As \(|f_n'(z)| < 1 \) for any \(z \in G \), \(n \geq 1 \)
Proof: As $|f'(z)| < 1$ for any $z \in G, n \geq 1$

Let $n \to \infty \Rightarrow |f(z)| \leq 1$ for $z \in G$.

Note f is not constant. By M.M.T

$|f(z)| < 1$ for $z \in G$.

It remains to prove $f(G) = D$.

Step 3: It remains to show that $f(G) = D$. Suppose we D.S.t $w \neq f(G)$. Then the function

$$h(z) = \frac{f(z) - w}{1 - \overline{w}f(z)}$$

is analytic in G and never vanishes. Then \exists an analytic function $h: G \to \mathbb{C}$ such that

$$h^2 = \frac{f(z) - w}{1 - \overline{w}f(z)} \quad (\star)$$

Note h^2 maps G to D, is $1-1 \Rightarrow h$ maps G to D, is $1-1$.

Define $g: G \to \mathbb{C}$ by

$$g(z) = \frac{h'(a)h(z) - h(a)}{h'(a)(1 - h(a)h(z))}$$

Then $g(G) \subset D$, $g(a) = 0$, and is $1-1$.

Also

$$g'(a) = \frac{h'(a)}{h'(a)} \frac{h'(a) [1 - h(a)^2]}{[1 - h(a)^2]^2} = \frac{h'(a)}{1 - h(a)^2}$$

But $f(a) = 0 \Rightarrow |h(a)|^2 = |w|$.

But \(f(a) = 0 \Rightarrow |h(a)|^2 = |w| \).

Differentiate \((*)\) \(\Rightarrow \)

\[
2 h(a) h'(a) = f'(a) (1-|w|^2)
\]

\(\Rightarrow \)

\[
|h'(a)| = \frac{f'(a) (1-|w|^2)}{2 \sqrt{|w|}}
\]

\(\Rightarrow \)

\[
g'(a) = \frac{f'(a) (1-|w|^2)}{2 \sqrt{|w|}} \frac{1}{1-|w|}
\]

\[
= f'(a) \frac{1+|w|}{2 \sqrt{|w|}}
\]

\(\Rightarrow f'(a) \).

Note \(g \notin F \) and this contradicts with the choice of \(f \).

Hence it must hold that \(f(G) = \{1\} \).