Pratice Problems

1. (i). State the Residue Theorem.
 (ii). Compute \(\int_{0}^{\infty} \frac{\sin x}{x} \)
 (iii). Compute the residue of \(f(x) = \frac{x^2}{z^2+1} \) at \(z = -i \).

2. (i) State Schwarz’s Lemma.
 (ii). Let \(D = \{ z \in \mathbb{C} : |z| < 1 \} \) and \(f \in H(D) \). Assume \(|f(z)| \leq 1 \) in \(D \). How large \(|f'(\frac{1}{2})| \) can be?

3. Prove there are infinitely many solutions in \(\mathbb{C} \) to the equation \(\sin(z) = \sin(iz) \).

4. Suppose \(f \) has an essential singularity at 0, and \(g \) has an essential singularity at 0. Prove that at least one of the functions \(f + g \) and \(fg \) has an essential singularity at \(z = 0 \).

5. Suppose \(f \) is a nonconstant entire function. Which of the following must be countably infinite?
 (a). \(f(\mathbb{Z}) \) (b). \(f(\mathbb{Q}) \) (c). \(f^{-1}(\mathbb{Q}) \)

6. Prove that for any \(a \in \mathbb{C} \) and any integer \(n \geq 2 \) the polynomial \(1 + z + az^n \) has at least one root in the disk \(\{|z| \leq 2\} \). (Hint: use the Vieta theorem that says that the product of the roots of a monic polynomial is equal to its constant term in absolute value.)

7. (i). Let \(f \) be a non-constant holomorphic function on a neighborhood of the closed unit disk such that \(|f(z)| \) is constant on the unit circle. Prove that \(f \) has at least one zero in the unit disk.
 (ii). Find all entire \(f \) such that \(|f| \) is constant on the unit circle.

8. Let \(f \) be a holomorphic function in the unit disk \(\mathbb{D} \) that is injective and satisfies \(f(0) = 0 \) Prove that there exists a holomorphic function \(g \) in \(\mathbb{D} \) such that \((g(z))^2 = f(z^2) \) for all \(z \in \mathbb{D} \).

10. All homework problems and midterm problems.