Practice Problems for final exam

1. True or False. Justify your answer.

 (a). Let \(G = \mathbb{C} \setminus \{ z \in \mathbb{R} : z \text{ is an integer} \} \). Suppose \(f \in H(G) \) such that \(|f(z)| \leq 1\) for all \(z \in G \). Then \(f \) is a constant.

 (b). Let \(G = \{ 0 < |z - 1| < 1 \} \). There exists \(f \in H(G) \) such that \(\lim_{z \to 1} |(z - 1)^k f(z)| = \infty \), for all integer \(k \geq 1 \).

2. Suppose \(f \) has an essential singularity at 0, and \(g \) has an essential singularity at 0. Prove that at least one of the functions \(f + g \) and \(fg \) has an essential singularity at \(z = 0 \).

3. Suppose \(f \) is a nonconstant entire function. Which of the following must be countably infinite?

 (a). \(f(\mathbb{Z}) \)
 (b). \(f(\mathbb{Q}) \)
 (c). \(f^{-1}(\mathbb{Q}) \)

4. Let \(f \) be a holomorphic function in the unit disk \(\mathbb{D} \) that is injective and satisfies \(f(0) = 0 \). Prove that there exists a holomorphic function \(g \) in \(\mathbb{D} \) such that \((g(z))^2 = f(z^2) \) for all \(z \in \mathbb{D} \).

5. State Riemann Mapping Theorem, Runge’s Theorem, Weierstrass Factorization Theorem, Mittag-Leffler’s Theorem, Schwarz Reflection Principle.

6. Let \(\{ p_n \}_{n=1}^{\infty} \subset \mathbb{Z}^+ \) be the sequence of prime numbers. Prove there exists \(f \in H(\mathbb{C}) \) such that \(f(p_n) = p_{n+1} \) for each \(n \).

7. Let \(f \) be a continuous function on \(\{ 0 < |z| \leq 1 \} \) that is analytic function on \(\{ 0 < |z| < 1 \} \). Assume \(f(z) = 0 \) for every \(z = e^{i\theta} \) with \(\frac{\pi}{4} < \theta < \frac{\pi}{3} \). Prove \(f \equiv 0 \).

8. Let \(A_1 = \{ z \in \mathbb{C} : 0 < |z| < 1 \} \) and \(A_2 = \{ z \in \mathbb{C} : 1 < |z| < 2 \} \). Prove \(A_1 \) and \(A_2 \) are not conformally equivalent.

9. Describe all analytic functions on \(\mathbb{C} \setminus \{ 0 \} \) with the property that

 \[|f(z)| \leq C(|z|^2 + \frac{1}{|z|^2}) \]

 for some constant \(C > 0 \).