Pratice Problems

Note: In this exam, \(\mathbb{D} = \{ z \in \mathbb{C} : |z| < 1 \} \).

1. Compute the integral \(\int_0^\infty \frac{1}{x^3 + 1} \, dx \).

2. Show that if \(G \neq \mathbb{C} \) is a simple connected region in \(\mathbb{C} \), \(f : G \to G \) is analytic, and \(f(z) \) is not identically zero equal \(z \), then \(f \) has at most one fixed point in \(G \). Show by examples that the conclusion fails if \(G = \mathbb{C} \) or \(G \) is not simple connected.

3. Let \(f(z) \) be analytic with \(|f(z)| \leq \frac{1}{2} \) on \(\mathbb{D} \) and \(f(0) = r \in \mathbb{R} \). Here \(0 < r < \frac{1}{2} \).

 (a). Prove that \(f(z) \) has no zero in the disk \(\{|z| < 2r\} \).

 (b). Can \(f(z) \) have a zero on the circle \(\{|z| = 2r\} \)? If so, find all such functions \(f(z) \).

4. Let \(b \in \mathbb{D} \) and set \(f(z) = z^7 - 2z^5 + b \).

 (a). How many simple roots \(f \) has in \(\mathbb{D} \)?

 (b). How many simple roots \(f \) has in \(\{1 \leq |z| < 2\} \)?

5. All homework problems.