Section 6.1

7. Let \(f \) be analytic in the disk \(B(0; R) \) and for \(0 \leq r < R \) define \(A(r) = \max\{\Re f(z) : |z| = r\} \). Show that unless \(f \) is a constant, \(A(r) \) is strictly increasing.

Solution: Let \(g(z) = e^{f(z)} \). Then \(A(r) \) is the maximum of \(|g(z)| \) on \(\overline{B}(0; r) \) by the maximum modulus theorem, which also says that it is only attained on \(\{ |z| = r \} \). Thus \(A(r) \) is strictly increasing unless \(g \) is constant. In that case, \(f \) is constant as well (for instance, by the chain rule, or the fact that the image of \(f \) is both connected and discrete, or the fact that \(\Re f \) is constant).

Section 6.2

1. Suppose \(|f(z)| \leq 1 \) for \(|z| < 1 \) and \(f \) is a non-constant analytic function. By considering the function \(g : D \to D \) defined by

\[
g(z) = \frac{f(z) - a}{1 - \overline{a} f(z)}
\]

where \(a = f(0) \), prove that

\[
\frac{|f(0)| - |z|}{1 + |f(0)||z|} \leq |f(z)| \leq \frac{|f(0)| + |z|}{1 - |f(0)||z|}
\]

for \(|z| < 1 \).

Solution: The definition of \(g \) does most of the work here; it allows us to apply Schwarz’s lemma and conclude that

\[
\frac{|f(z) - a|}{|1 - \overline{a} f(z)|} = |g(z)| \leq |z|
\]

for all \(z \in D \). Clearing denominators and rearranging (by assumption, both denominators are positive), the desired inequalities are equivalent to

\[
\frac{|f(0)| - |f(z)|}{1 + |f(0)||f(z)|} \leq |z| \leq \frac{|f(z)| - |f(0)|}{1 + |f(0)||f(z)|}.
\]
The first is obvious unless \(|f(0)| \geq |f(z)|\); in this case, the reverse triangle inequality says that
\[
|f(0)| - |f(z)| = |a| - |f(z)|
\leq |f(z) - a|
\]
so that
\[
\frac{|f(0)| - |f(z)|}{1 + |f(0)||f(z)|} \leq \frac{|f(z) - a|}{1 + |af(z)|}
\leq \frac{|f(z) - a|}{|1 - af(z)|}
\]
which we know to be \(\leq |z|\). Assuming instead that \(|f(z)| \geq |f(0)|\), the second inequality follows in exactly the same manner.

2. Does there exist an analytic function \(f : D \to D\) with \(f\left(\frac{1}{2}\right) = \frac{3}{4}\) and \(f'(\frac{1}{2}) = \frac{2}{3}\)?

Solution: No such \(f\) exists. If it did, we could let \(g = \varphi_{\frac{3}{4}} \circ f\). Then by Schwarz’s lemma,
\[
1 \geq |g'(\frac{1}{2})|
= |\varphi_{\frac{3}{4}}'(\frac{3}{4})f'(\frac{1}{2})|
= (1 - (\frac{3}{4})^2)^{-1} \cdot \frac{2}{3}
= \frac{16}{7} \cdot \frac{2}{3}
= \frac{32}{21}
\]
a contradiction.

8. Is there an analytic function \(f\) on \(B(0; 1)\) such that \(|f(z)| < 1\) for \(|z| < 1\), \(f(0) = \frac{1}{2}\), and \(f'(0) = \frac{3}{4}\)? If so, find such an \(f\). Is it unique?

Solution: Proposition 2.2 says that \(\varphi_{-\frac{1}{2}}\) does the job. Moreover, the argument preceding theorem 2.5 tells us that any analytic \(f : D \to D\) with \(f(0) = \frac{1}{2}\) satisfies
\[
f(0) \leq \frac{3}{4},
\]
with equality only when \(f(z) = \varphi_{-\frac{1}{2}}(cz), |c| = 1\). This forces \(f'(0) = c \cdot \frac{3}{4}\), so in fact \(c = 1\) and \(f = \varphi_{-\frac{1}{2}}\) is unique.