7. Let \(\{f_n\} \subset C(G, \Omega) \) and suppose that \(\{f_n\} \) is equicontinuous at each point of \(G \). If \(f \in C(G, \Omega) \) and \(f(z) = \lim f_n(z) \) for each \(z \) then show that \(f_n \to f \).

Solution: To show that \(f_n \to f \) in \(C(G, \Omega) \), it’s enough to show that \(f_n \) converges to \(f \) uniformly on compact subsets of \(G \). To see this, first note that for any \(z, z' \in G \) and any \(n \),
\[
d(f_n(z), f(z)) \leq d(f_n(z), f_n(z')) + d(f_n(z'), f(z')) + d(f(z'), f(z))
\]
by the triangle inequality. We can (uniformly) bound each of the right hand terms separately. Let \(K \subseteq G \) be any compact subset. Since \(\{f_n\} \) is equicontinuous at each point of \(G \), we know it is in fact equicontinuous on \(K \), so for any \(\epsilon \) we can find some \(\delta_1 \) independent of \(z \) such that \(z, z' \), \(d(z, z') < \delta_1 \) implies \(d(f_n(z), f_n(z')) < \epsilon \). On the other hand, \(f \) is uniformly continuous on \(K \), so we can also find a uniform \(\delta_2 \) such that \(d(f(z'), f(z)) < \epsilon \) if \(d(z, z') < \delta_2 \). Thus, given \(z \in K \), we can ensure that all three terms are bounded sufficiently close to \(z \).

However, \(K \) is compact, so we can cover \(K \) with a finite number of sufficiently small balls—of radius \(\delta \) (smaller than \(\delta_1 \) and \(\delta_2 \)) centered at \(z_1 \) through \(z_m \), say. By assumption, for each \(j \) there is an \(N_j \) such that \(n \geq N_j \) implies \(d(f_n(z_j), f(z_j)) < \epsilon \), and we let \(N \) be the greatest of these. Then the previous paragraph (letting \(z' \) be the appropriate \(z_j \)) shows that \(d(f_n(z), f(z)) < 3\epsilon \) for \(n \geq N \) uniformly on \(K \). This argument works (possibly using different \(\delta \)'s, \(N \)'s, and \(m \)'s) for any \(\epsilon \) and for any \(K \), so we have uniform convergence on compact subsets.

8. (a) Let \(f \) be analytic on \(B(0; R) \) and let \(f(z) = \sum_{n=0}^{\infty} a_n z^n \) for \(|z| < R \). If \(f_n(z) = \sum_{k=0}^{n} a_k z^k \), show that \(f_n \to f \) in \(C(G, \mathbb{C}) \).

Solution: Again, this is the same as asking for uniform convergence of the partial sums on compact subsets of \(B(0; R) \). Any such subset is certainly contained in \(\overline{B}(0; r) \) for some \(r < R \), and uniform convergence on these follows from the Weierstrass M-test, as explained (theorem 1.3 part c) last quarter.
(b) Let \(G = \operatorname{ann}(0; 0, R) \) and let \(f \) be analytic on \(G \) with Laurent series development \(f(z) = \sum_{n=-\infty}^{\infty} a_n z^n \). If \(f_n(z) = \sum_{k=-\infty}^{n} a_k z^k \), show that \(f_n \to f \) in \(C(G; \mathbb{C}) \).

Solution: Separating the Laurent series into its positive and negative powers and looking for uniform convergence on smaller annuli, we can reduce to the power series case; see theorem 1.11 for details.