Relevant readings: Cutland Ch 9

1. (Cutland 9.1.7.3-4)
 (a) Show that \(\{ x : \phi_x \text{ is total} \} \leq_m \{ x : W_x \text{ is infinite} \} \).
 (c) Show that neither of the above sets is \(m \)-reducible to an r.e. set.

2. (Cutland 9.2.9.5) Let \(a, b \) be \(m \)-degrees.
 (a) Show that the least upper bound of \(a, b \) is uniquely determined; denote it by \(a \cup b \).
 (b) Show that if \(a \leq_m b \) then \(a \cup b = b \).
 (c) Show that if \(a, b \) are both r.e. then so is \(a \cup b \).
 (d) Let \(A \in a \) and let \(a^* \) denote \(d_m(\bar{A}) \). Show that \((a \cup a^*)^* = a \cup a^* \).

3. (Cutland 9.4.10.5a) Prove that for any set \(A \) and (oracle) set \(B \),
 \[A \text{ is } B\text{-recursive} \iff A, \bar{A} \text{ are both } B\text{-r.e.} \]

4. (Cutland 9.4.10.8) Let \(A \) be any set. Show that for any set \(B \),
 \[B \text{ is } A \text{-r.e.} \iff B \leq_m K^A. \]

5. (Cutland 9.5.21.2) Prove that for any sets \(A, B \),
 \[A \leq_T B \iff K^A \leq_m K^B, \]
 and
 \[A =_T B \iff K^A =_m K^B. \]