1. (Cutland 9.1.7.3-4)

(a) Show that \(\{ x : \phi_x \text{ is total} \} \leq_m \{ x : W_x \text{ is infinite} \} \).

We want to translate questions about totality to questions about infinite domains. Define

\[
f(x, y) = \begin{cases}
\phi_x(y) & \text{if } \phi_x(z) \in \mathbb{N} \text{ for all } z \leq y \\
u.d. & \text{otherwise.}
\end{cases}
\]

This function is computable by the following algorithm: on input \(x, y \), compute \(\phi_x(0), \phi_x(1), \ldots \), in turn until reach \(\phi_x(y) \) (if ever). If, for some \(i \leq y \), \(\phi_x(i) \) is undefined then the algorithm never halts and \(f(x, y) \) is undefined. Otherwise, return \(\phi_x(y) \).

Therefore, the \(s - m - n \) theorem gives a total computable function \(k(x) \) such that

\[
\phi_{k(x)}(y) \simeq f(x, y).
\]

But,

\[
\phi_x \text{ is total } \iff \phi_{k(x)} \text{ has infinite domain}
\]

since if there is some \(y \) for which \(\phi_x(y) \) is undefined, for all \(z \geq y \), \(\phi_{k(x)}(z) \) is undefined. Thus, \(k(x) \) witnesses the \(m \)-reduction.

(c) Show that neither of the above sets is \(m \)-reducible to an r.e. set.

Recall that if \(A \leq_m B \) and \(B \) is r.e. then \(A \) is r.e. (Fact 5 from lecture). Therefore, if either of the above sets were \(m \)-reducible to an r.e. set, it would itself be r.e.

However, note that each of these sets is an index set. By the Rice-Shapiro theorem, an index set is r.e. if and only if it is determined by finite approximations. Let \(\mathcal{A} = \{ \phi_e : \phi_e \text{ is total} \} \) and \(\mathcal{B} = \{ \phi_x : W_x \text{ is infinite} \} \). Any total computable function \(\theta \) is in \(\mathcal{A} \) but none of its finite approximations \(\theta \subset \theta \) are in \(\mathcal{A} \) (they are not total since they have finite domains). Thus, by the Rice-Shapiro theorem, \(\{ x : \phi_x \in \mathcal{A} \} = \{ x : \phi_x \text{ is total} \} \) is not r.e. Similarly, any total computable function is in \(\mathcal{B} \) but none of its finite approximations is in \(\mathcal{B} \). Hence, we conclude that \(\{ x : \phi_x \in \mathcal{B} \} = \{ x : W_x \text{ is infinite} \} \) is not r.e.

Since each of these sets is not r.e., neither is \(m \)-reducible to an r.e. set.

2. (Cutland 9.2.9.5) Let \(a, b \) be \(m \)-degrees.

(a) Show that the least upper bound of \(a, b \) is uniquely determined; denote it by \(a \cup b \).

Suppose we have two \(m \)-degrees \(c_1, c_2 \) that are candidates for being the least upper bound of \(a, b \). Let \(A \in a, B \in b, C_1 \in c_1, C_2 \in c_2 \). By definition of upper bound, for each \(i = 1, 2 \), \(A \leq_m C_i \) and \(B \leq_m C_i \).

But, since each \(c_i \) is a least upper bound and the above line says that each \(C_i \) is an upper bound, we have that

\[
C_1 \leq_m C_2 \quad \text{and} \quad C_2 \leq_m C_1.
\]

In other words, \(C_1 \equiv_m C_2 \), so \(c_1 = c_m \), and the least upper bound is unique.
(b) Show that if \(a \leq_m b \) then \(a \cup b = b \).

Let \(A, B \) be sets as in (b). By reflexivity, \(B \leq_m B \). And, since \(a \leq_m b \), \(A \leq_m B \). This means that \(B \) is an upper bound for \(A, B \). Since \(a \cup b \) is the least upper bound and \(A \uplus B \in a \cup b \) (proof of Theorem 9.2.8), we have \(A \uplus B \leq_m B \). But, since \(B \leq_m A \uplus B \) (also in proof of Theorem 9.2.8), we conclude \(B \equiv_m A \uplus B \) and so \(b = a \cup b \).

(c) Show that if \(a, b \) are both r.e. then so is \(a \cup b \).

Let \(A, B \) be sets as in (b) and let \(f_A, f_B \) be their (respective) partial characteristic functions. By definition of recursive enumerability, \(f_A \) and \(f_B \) are computable. It suffices to prove that \(f_{A \uplus B} \), the partial characteristic function of \(A \uplus B \), is computable.

\[
f_{A \uplus B}(x) = \begin{cases} 1 & \text{if } x \text{ is even and } f_A(x/2) = 1, \\ 1 & \text{if } x \text{ is odd and } f_B((x-1)/2) = 1, \\ \text{u.d.} & \text{otherwise}. \end{cases}
\]

Deciding if \(x \) is even or odd can be done computably, and then we use the computability of \(f_A, f_B \) to conclude that \(f_{A \uplus B} \) is computable. Thus, \(a \cup b \) contains an r.e. set and hence is r.e.

(d) Let \(A \in a \) and let \(a^* \) denote \(d_m(\overline{A}) \). Show that \((a \cup a^*)^* = a \cup a^* \).

By the proof of Theorem 9.2.8, \(A \uplus \overline{A} \in a \cup a^* \) and \(A \uplus A \in (a \cup a^*)^* \). Hence, it suffices to prove that \(A \uplus \overline{A} \equiv_m A \uplus A \). By the definition of \(\uplus \),

\[
x \in A \uplus \overline{A} \iff \begin{cases} x \text{ is even } \land x/2 \in A, \text{or} \\ x \text{ is odd } \land (x-1)/2 \in \overline{A}. \end{cases}
\]

Similarly,

\[
x \in \overline{A} \uplus A \iff \begin{cases} x \text{ is even } \land x/2 \in \overline{A}, \text{or} \\ x \text{ is odd } \land (x-1)/2 \in A. \end{cases}
\]

Consider the (total computable) function \(f(x) = \begin{cases} x + 1 & \text{if } x \text{ is even} \\ x - 1 & \text{if } x \text{ is odd} \end{cases} \). For each even \(x \),

\[
x \in A \uplus \overline{A} \iff ((x+1)-1)/2 \in A \iff f(x) \text{ is odd and } (f(x)-1)/2 \in A \iff f(x) \in A \uplus A,
\]

\[
x \in \overline{A} \uplus A \iff ((x+1)-1)/2 \in \overline{A} \iff f(x) \text{ is odd and } (f(x)-1)/2 \in \overline{A} \iff f(x) \in A \uplus \overline{A}.
\]

Similarly, for each odd \(x \),

\[
x \in A \uplus \overline{A} \iff (x-1)/2 \in \overline{A} \iff f(x) \text{ is even and } f(x)/2 \in \overline{A} \iff f(x) \in \overline{A} \uplus A,
\]

\[
x \in \overline{A} \uplus A \iff (x-1)/2 \in A \iff f(x) \text{ is even and } f(x)/2 \in A \iff f(x) \in A \uplus \overline{A}.
\]

In other words, for all \(x, x \in A \uplus \overline{A} \iff f(x) \in \overline{A} \uplus A \) and \(x \in A \uplus \overline{A} \iff f(x) \in A \uplus \overline{A} \).

Thus the function \(f \) witnesses both that \(A \uplus \overline{A} \leq_m A \uplus \overline{A} \) and that \(A \uplus \overline{A} \leq_m A \uplus \overline{A} \).

3. (Cutland 9.4.10.5a) Prove that for any set \(A \) and (oracle) set \(B \),

\[
A \text{ is } B\text{-recursive } \iff A, \overline{A} \text{ are both } B\text{-r.e.}
\]
Suppose A is B-recursive. Then $A \leq_T B$, so by definition there is some index e such that $\phi_e^B \cong \chi_A$. Consider the functions

$$f(x) = \begin{cases} 1 & \text{if } \phi_e^B(x) = 1 \\ \text{u.d.} & \text{if } \phi_e^B(x) = 0 \end{cases}$$

$$\bar{f}(x) = \begin{cases} 1 & \text{if } \phi_e^B(x) = 0 \\ \text{u.d.} & \text{if } \phi_e^B(x) = 1. \end{cases}$$

These are both B-computable because they are obtained by finitely many operations (p.r. and composition) from B-computable functions. Moreover, they compute (respectively) the partial characteristic functions of A, \bar{A}. Therefore, A, \bar{A} are each B-r.e.

Conversely, suppose that A, \bar{A} are each B-r.e. Then, by definition, the partial characteristic functions for A, \bar{A} are each B-computable. Consider the following algorithm to compute χ_A: on input x, run in parallel (e.g. by alternating steps of computation) the algorithms (which may call on information about oracle B) which compute $f_A(x), \bar{f}_A(x)$. Exactly one of these will halt and wish to output 1. If the computation of $f_A(x)$ halts, output 1; if the computation of $\bar{f}_A(x)$ halts, output 0. By the relativised Church-Turing thesis, we have proved that χ_A is computable using oracle B, and hence that A is B-recursive.

4. (Cutland 9.4.10.8) Let A be any set. Show that for any set B,

$$B \text{ is A - r.e. } \iff B \leq_m K^A.$$

Suppose B is A-r.e. Then the partial characteristic function f_B is A-computable. Define the function

$$f(x, y) = \begin{cases} 1 & \text{if } x \in B \\ \text{u.d.} & \text{if } x \notin B \end{cases} = f_B(x).$$

Since this function is A-computable, the relativised $s - m - n$ theorem says that there is a total and computable function $k(x)$ such that

$$\phi_k^A(y) \cong f(x, y).$$

But,

$$x \in B \iff f(x, k(x)) \in \mathbb{N} \iff \phi_k^A(k(x)) \in \mathbb{N} \iff k(x) \in K^A.$$

Thus, k witnesses that $B \leq_m K^A$.

Conversely, suppose that $B \leq_m K^A$. Then there is a total computable function g such that

$$x \in B \iff g(x) \in K^A \iff \phi_g^A(g(x)) \in \mathbb{N} \iff \psi_U^A(g(x), g(x)) \in \mathbb{N}.$$

To prove that B is A-r.e, we will give an algorithm (which may ask about membership in A) which computes the partial characteristic function f_B. On input x, first compute $g(x)$ and then run the universal URMO program with oracle A on $(g(x), g(x))$. If this computation halts, output 1. By the relativised Church-Turing thesis, we are done.

5. (Cutland 9.5.21.2) Prove that for any sets A, B,

$$A \leq_T B \iff K^A \leq_m K^B,$$

Suppose $A \leq_T B$. It suffices to prove that K^A is B-r.e. (by the result of question 4). We first prove that K^A is A-r.e: write the partial characteristic function of K_A as

$$f_{K^A}(x) = \begin{cases} 1 & \text{if } x \in K^A \\ \text{u.d.} & \text{otherwise} \end{cases} = \begin{cases} 1 & \text{if } \psi_U^A(x, x) \in \mathbb{N} \\ \text{u.d.} & \text{otherwise,} \end{cases}$$
hence an algorithm with access to oracle A can compute it. Thus, K^A is A-r.e.

But, in class we proved that for any sets X, Y, Z: if $X \leq_T Y$ and Z is X-r.e. then Z is Y-r.e. Recapping the proof: since Z is X-r.e. there is an algorithm using oracle X which computes the partial characteristic function f_Z. We can modify this algorithm by replacing all calls to oracle X by the algorithm which computes membership in X with oracle Y. Hence, we get an algorithm for f_Z which only uses the oracle Y. This proves that Z is Y-r.e.

Since we have that K^A is A-r.e. and we assume that $A \equiv_T B$, we conclude that K^A is B-r.e. Therefore, $K^A \leq_m K^B$.

Conversely, suppose that $K^A \leq_m K^B$. Since A is A-r.e., the results of question 4 and transitivity give that

$$A \leq_m K^A \leq_m K^B \quad \text{hence} \quad A \leq_m K^B \quad \text{hence} \quad A \text{ is } B \text{-r.e.}$$

Similarly, \bar{A} is A-r.e., so a similar chain of reasoning gives that \bar{A} is also B-r.e. Applying the result of question 3, we conclude that A is B-recursive, that is $A \equiv_T B$.

$$A \equiv_T B \iff K^A \equiv_m K^B.$$

This follows immediately from the first part and the definition of \equiv_T, \equiv_m:

$$A \equiv_T B \iff (A \leq_T B \land B \leq_T A) \iff (K^A \leq_m K^B \land K^B \leq_m K^A) \iff K^A \equiv_m K^B.$$