1. Write a URM program that computes the function

\[g(x) = \begin{cases}
\sqrt{x} & \text{if } x \text{ is a perfect square} \\
\text{undefined} & \text{otherwise.}
\end{cases} \]

Hint: find \(f(x, y) \) such that \(g(x) \simeq \mu y \) (\(f(x, y) = 0 \)) and use the URM program for \(f \) as a subroutine in the program for \(g \).

2. Recall the construction from lecture: given any unary function \(f \) computed by TM \(M \), there is a general recursive function \(f_m \) computing \(f \) (where \(m \) is the code for the machine \(M \)). In particular,

\[f_m(x) = \text{out}(m, x, \text{halt}(m, x)) \]

is defined by composition of the functions start, conf, newleft, nextstate, actn, etc. [see the handout for notation]. Explain how the construction must be changed when the original function \(f \) has arity \(k \).

Define the Ackermann function as follows:

\[\psi(0, y) = y + 1 \quad \psi(x + 1, 0) \simeq \psi(x, 1) \]

\[\psi(x + 1, y + 1) \simeq \psi(x, \psi(x + 1, y)) \]

3. (a) Compute \(\psi(0, 2) \), \(\psi(1, 2) \), \(\psi(2, 2) \), \(\psi(3, 2) \).

(b) Prove that \(\psi \) is well-defined total function by showing that, for all \(x, y \), \(\psi(x, y) \) can be obtained by using only a finite number of earlier values of \(\psi \).

(c) Prove that for each \(n \), the (unary) function \(f_n(y) = \psi(n, y) \) is primitive recursive.

4. This question illustrates why \(\psi \) is recursive. Define a set \(S \) of triples to be suitable if it satisfies

(i) if \(\langle x, y, z \rangle \in S \) then \(z = y + 1 \)

(ii) if \(\langle x + 1, 0, z \rangle \in S \) then \(\langle x, 1, z \rangle \in S \)

(iii) if \(\langle x + 1, y + 1, z \rangle \in S \) then there is \(u \) such that \(\langle x + 1, y, u \rangle \in S \) and \(\langle x, u, z \rangle \in S \).

(a) Prove that if \(S \) is a suitable set of triples and \(\langle x, y, z \rangle \in S \) then \(z = \psi(x, y) \).

(b) Prove that for any \(m, n \in \mathbb{N} \), the set of triples \(\langle x, y, \psi(x, y) \rangle \) used in the calculation of \(\psi(m, n) \) forms a suitable set of triples.

(BONUS) Prove the converse of (b): if \(S \) is a suitable set of triples and \(\langle x, y, z \rangle \in S \) then \(S \) contains all the earlier triples needed to calculate \(\psi(x, y) \).

Putting the pieces together: Using primitive recursive coding (see details in Cutland p. 47),

\[A = \{ \langle x, y, v \rangle : v \text{ is the code number of a suitable set of triples and } \exists z < v(\langle x, y, z \rangle \in S_v) \} \]

has a primitive recursive characteristic function \(\chi_A \). Therefore, the function \(f(x, y) = \mu v (1 - \chi_A(\langle x, y, v \rangle) = 0) \) is general recursive and gives a code for a suitable set of triples. Moreover,

\[\psi(x, y) = \mu z(\langle x, y, z \rangle \in S_f(x, y)). \]

Thus, \(\psi \) is general recursive.
5. This question illustrates why $\psi(x, y)$ is not primitive recursive.

(a) Prove that if f is in the class of functions that can be obtained from $0, S, U^n_i$ by composition (without primitive recursion) then there is $a \in \mathbb{N}$ such that for all x_1, \ldots, x_n

$$f(x_1, \ldots, x_n) < \max\{x_i\} + a.$$

(b) Show that (a) implies that the addition function is not in this class of functions.

(BONUS) Prove that if f is in the class of functions obtained from the basic functions by composition and at most one use of primitive recursion then there is $c \in \mathbb{N}$ such that for all x_1, \ldots, x_n

$$f(x_1, \ldots, x_n) < c \max\{x_1\} + c.$$

Explain the relevance of these observations to the fact that $\psi(x, y)$ is not primitive recursive.