Let A be a countable set. $A = \{a_1, a_2, a_3, \ldots\}$

By (1), the set of all finite subsets of A is countable.

The set A is countable, and so the set of finite subsets of

A finite subset of A is a subset of a countable set.

We now consider the set of countable sets, $A = \{B_1, B_2, B_3, \ldots\}$

We form a new countable list by diagonalizing over all countable elements A. The new list is A, where $A = \{a_1, a_2, a_3, \ldots\}$

Because of the construction of A, any countable subset of A contains every element of A.

So A is countable, and so the set of finite subsets of A is countable.
Consider the program
\[I_1 : J(1, 2, 6) \quad I_2 : S(2) \quad I_3 : S(3) \quad I_4 : J(1, 2, 6) \quad I_5 : (1, 1, 2) \quad I_6 : T(3, 1) \]
Show that the computation under this program with initial configuration 2, 3, 0, 0, ... never stops.

In order for this URM to stop, it has to execute \(I_6 : T(3, 1) \) (cf. Fig.1b on p.15). And since this is an arithmetic instruction, the URM stops whenever it reads \(I_6 \).

In order to proceed to \(I_6 \), it has to execute \(I_1 : J(1, 2, 6) \) or \(I_4 : J(1, 2, 6) \) with \(r_1 = r_2 \). This is because \(I_5 : J(1, 1, 2) \) creates a loop and never let the URM to proceed to \(I_6 \).

In our initial configuration, \(r_1 = 2, r_2 = 3 \) and \(r_1 < r_2 \). Hence \(r_1 \neq r_2 \). Since the only instructions besides \(I_1 \) and \(I_4 \) that occur in the loop are \(I_2 : S(2), I_3 : S(3) \), it is always the case that \(r_1 < r_2 \).
and hence \(r_1 \neq r_2 \). However, in order to proceed to \(I_6 \) through either of the jump instructions \(I_1 \) and \(I_4 \), it has to be the case that \(r_1 = r_2 \). Thus, the URM with this initial configuration does not stop.
Begin with the configuration \(x, y, 0, 0, 0, \ldots\)

<table>
<thead>
<tr>
<th>Step</th>
<th>Condition</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(i, j \in {1, 2, 3, 4, 5})</td>
<td>Checks if (x) or (y) is (0)</td>
</tr>
<tr>
<td>2</td>
<td>(i > j)</td>
<td>(x = y) counts (x) or (y)</td>
</tr>
<tr>
<td>3</td>
<td>(i > j)</td>
<td>Steps (x-y) counts (x) or (y)</td>
</tr>
<tr>
<td>4</td>
<td>(i > j)</td>
<td>Steps (x)-counter (x) for (i) and (j)</td>
</tr>
<tr>
<td>5</td>
<td>(i > j)</td>
<td>(y)-counter (y) for (i) and (j)</td>
</tr>
<tr>
<td>6</td>
<td>(i > j)</td>
<td>(z)-counter (z) for (i) and (j)</td>
</tr>
<tr>
<td>7</td>
<td>(i > j)</td>
<td>(x)-counter (x) for (i) and (j)</td>
</tr>
<tr>
<td>8</td>
<td>(i > j)</td>
<td>(y)-counter (y) for (i) and (j)</td>
</tr>
<tr>
<td>9</td>
<td>(i > j)</td>
<td>(z)-counter (z) for (i) and (j)</td>
</tr>
<tr>
<td>10</td>
<td>(i > j)</td>
<td>(x)-counter (x) for (i) and (j)</td>
</tr>
<tr>
<td>11</td>
<td>(i > j)</td>
<td>(y)-counter (y) for (i) and (j)</td>
</tr>
<tr>
<td>12</td>
<td>(i > j)</td>
<td>(z)-counter (z) for (i) and (j)</td>
</tr>
</tbody>
</table>

\(x, y\) is stored in \(R_1\). \(f(x, y) = xy\)
Exercise 4

Theorem 2. If P is a program without jump, $\exists m \in \mathbb{N}$ such that $\forall x (f_{x,1}(x) = m) \lor \forall x (f_{x,1}(x) = x + m)$

Let us prove theorem 2 by induction on the length of P. The initial state of the registers is $x, 0, 0, \ldots$. We define $P(P)(s)$ as:

Definition: $P(P)(s)$ is P has no jump and P is of length s entails that $\exists m \in \mathbb{N}$ such that $\forall x (f_{x,1}(x) = m) \lor \forall x (f_{x,1}(x) = x + m)$

Basis (B): $P(P)(1)$
Induction step (I): $\mathcal{P}(P(s)) \rightarrow \mathcal{P}(P(s+1))$

Proof of B: Since there is no jump instruction in P, then P contains only instructions of the form $Z(u)$, $S(u)$ or $T(u,v)$, for some $u,v \leq \rho(P)$. By hypothesis, there is only one instruction in P. Then:

- If this instruction is of the form $Z(n)$, $S(n)$ or $T(m,n)$ for some $m,n \in \mathbb{N}$ and $n > 1$ and $m \geq 1$, then the contents of R_1 is not affected by P, and
 \[\forall x : P(x) \downarrow x. \] Then $\exists m \in \mathbb{N}$ such that $\forall x(f^P_1(x) = x + m)$, with $m = 0$.

- If this instruction is of the form $Z(1)$ or $T(m,1)$ for some $m \in \mathbb{N}$ and $m > 1$, then $\forall x : P(x) \downarrow 0$ and $\exists m \in \mathbb{N}$ such that $\forall x(f^P_1(x) = m)$, with $m = 0$.

- If this instruction is of the form $T(1,1)$ then $\forall x : P(x) \downarrow x$ and $\exists m \in \mathbb{N}$ such that $\forall x(f^P_1(x) = x + m)$, with $m = 0$.

- If this instruction is of the form $S(1)$ then $\forall x : P(x) \downarrow x + 1$ and $\exists m \in \mathbb{N}$ such that $\forall x(f^P_1(x) = x + m)$, with $m = 1$.

There are no other possible instructions in a program P of length 1 without jump.

In all cases, given a program P of length 1 without jump, $\exists m \in \mathbb{N}$ such that $\forall x(f^P_1(x) = m) \lor \forall x(f^P_1(x) = x + m)$.

Proof of I: Let P be of length s. If $\mathcal{P}(P(s))$, then for all P, $\exists m \in \mathbb{N}$ such that $\forall x, R_1 = x + m$ after the execution of I_s, or $R_1 = m$ after the execution of I_s. Let define the program P_s as the concatenation of one instruction I_{s+1} to P, such that I_{s+1} is not a jump. Then:

- If I_{s+1} is of the form $Z(n)$, $S(n)$ or $T(m,n)$ for some $m,n \in \mathbb{N}$ and $n > 1$ and $m \geq 1$, then the contents of R_1 is not affected by I_{s+1}, and for all x, $P(x) \downarrow b \rightarrow P_s(x) \downarrow b$. Given that $\mathcal{P}(P(s))$, this entails that $\exists m \in \mathbb{N}$ such that $\forall x(f^P_1(x) = m) \lor \forall x(f^P_1(x) = x + m)$

- If I_{s+1} is of the form $S(1)$, then $R_1 = b + 1$ after the execution of I_{s+1}, where b is the contents of R_1 right after the execution of I_s. Since $\mathcal{P}(P(s))$, $\exists m \in \mathbb{N}$ such that $\forall x(f^P_1(x) = m) \lor \forall x(f^P_1(x) = x + m)$

- If I_{s+1} is of the form $Z(1)$ or $T(x,1)$, where $x > \rho(P)$, then $R_1 = 0$ after the execution of I_{s+1}. Then $\exists m \in \mathbb{N}$ such that $\forall x(f^P_1(x) = m)$, with $m = 0$.

- If I_{s+1} is of the form $T(v,1)$ for some v such that $1 < v \leq \rho(P)$, then $\exists m \in \mathbb{N}$ such that $\forall x$ in the domain of f^P_1, either $R_1 = x + m$ right before the execution of I_{s+1}, or $R_1 = m$ right before the execution of I_{s+1}. This can be proven by contradiction with the induction hypothesis. Let a_1 and a_2 be two natural numbers in the domain of f^P_1, such that $a_1 \neq a_2$. Let us further assume that there exists two natural numbers m and n such that $m \neq n$ and $R_1 = a_1 + m$ right before the execution of I_{s+1} if $R_1 = a_1$ in the initial state, but $R_1 = a_2 + n$ right before the execution of I_{s+1} if $R_1 = a_2$ in the initial state. In this case, an application of $T(v,1)$ in I_{s+1}
would falsify theorem 2, hence there is a program of length $s + 1$ such that $P(P)(s + 1)$ is false. But then, since $1 < v \leq s$, there is also a program of length s such that $I_v = T(v, 1)$, and $P(P)(s)$ is false. However, this contradicts our inductive hypothesis, which allows us to conclude that $\forall P$ of length s without jump, $\forall v$ such that $1 < v \leq s$, $\exists m \in \mathbb{N}$ such that $\forall x$ in the domain of $f_{p_v}^x$, either $R_v = x + m$ right before the execution of I_{s+1}, or $R_v = m$ right before the execution of I_{s+1}. If $I_s = T(v, 1)$ in these conditions, $\exists m \in \mathbb{N}$ such that $\forall x (f_{p_v}^x(x) = m) \lor \forall x (f_{p_v}^x(x) = x + m)$.

- There is no other possible form of I_{s+1} given that there are no jumps in P^*.

In all cases, $P(P)(s) \rightarrow P(P)(s + 1)$. Given that $P(P)(1)$ is true, we conclude by induction that for all $s \in \mathbb{N}$, $P(P)(s)$ is true.
7 For each instruction $T(m,n)$, there is a program S such that every instruction with exactly the same effect as $T(m,n)$...

Suppose we have a program:

$I_1:$...
$I_2:$...
\vdots
$I_k : T(m,n)$
I_{k+1}:

We replace the k^{th} instruction, $T(m,n)$, with the sub-program:

$I_{k+1} : Z(n)$
$I_{k+2} : J(m, n, k+1)$
$I_{k+3} : S(n)$
$I_{k+4} : J(1,1, \ldots k+1)$

This sub-program changes only the value of the register P_n, and makes reference only to the registers P_r and P_n—so any other registers won't be affected.

And when the sub-program is done running (i.e., $m=m$), it jumps to the step that followed the original transfer instruction.