Let G be a graph and let $v \in V(G)$. Define the component of G generated by v to be the subgraph of G induced by the set

$$\{x \in V(G) : \text{there is an } x-v \text{ path in } G\}.$$

(1) Prove that the component of G generated by v is a maximal connected subgraph of G.

(2) Prove that v is in the component of G generated by itself.

(3) Let $v, u \in V(G)$. Prove that if u is in the component of G generated by v then v is in the component of G generated by u.

(4) Let $v, u, w \in V(G)$. Prove that if u is in the component of G generated by v and if v is in the component of G generated by w then u is in the component of G generated by w.
(1) Let $S \subseteq V(G)$ be the vertex set of the component of G generated by v. To prove that the subgraph induced by S is a maximal connected subgraph, we need to show that if $x \in V(G) \setminus S$, then the subgraph induced by $S \cup \{x\}$ is not connected. Towards a contradiction, suppose that this subgraph is connected. By definition, this means that there is a path between any two vertices. In particular, there is a path between v and x. But, then $x \in S$ by definition of the component generated by v. This contradicts our assumption that $x \notin S$.

(2) The length 0 path with one vertex, v, witnesses that there is a path from v to v in G and that, therefore, v is in the component of G generated by itself.

(3) If u is in the component of G generated by v then there is a sequence of vertices x_1, \ldots, x_k such that u, x_1, \ldots, x_k, v is a path in G. But, paths are non-directional. So v, x_k, \ldots, x_1, u is also a path in G and so v is in the component of G generated by u.

(4) If u is in the component of G generated by v then there is a path u, x_1, \ldots, x_k, v. If v is in the component of G generated by w then there is a path v, y_1, \ldots, y_j, w. Concatenating these two paths gives the walk $u, x_1, \ldots, x_k, v, y_1, \ldots, y_j, w$. Earlier, we proved that if G contains a walk between two vertices then there is a path in G with those endpoints. Therefore, u is in the component of G generated by w.