MATH 109 Assignment 3
Due: 4/18/11

#7.2 (i) Counterexample: This is the statement that if m € Z* then
neZt:m<n}=7".
When m = 2, we have 1 ¢ {n € Z' : 2 < n} so the set does not equal Z*. O

(iii) Proof. This is the statement that if m € Z* then the set {n € Z* : m < n} is
nonempty. Since m € {n € Z* : m < n}, we see that the statement is true for all integers
meZ". O

(v) Proof. This is the statement that if n € Z* then the set {m € Z* : m < n} is
nonempty. Since n € {m € Z* : m < n}, we see that the statement is true for all integers
nezr. O

#7.4 (iii) Proof. This is the statement that if x € R then the set {y € R : zy = 0}
is nonempty. Since z -0 = 0, we see that 0 € {y € R : zy = 0}, and hence the set is
nonempty. O

(iv) Proof. This is the statement that the set {y € R : Vo € R,zy = 0} is nonempty.
Since z-0 = 0, we see that 0 € {y € R : Vax € R, zy = 0}, and hence the set is nonempty. [

#8.1 Proof. To show that g is well-defined, we need to show that to each (z,y) € R?, the
function g assigns a unique real number. Let (z,y) € R. By trichotomy (Axiom 3.1.2 (i)),
we have that exactly one of the three possibilities © <y, x =y, x > y is true.

Case 1: If x <y, then x <y and = % y so g(x,y) = y is well-defined.

Case 2: If x = y then z < y so g(x,y) = . We also have, however, that z > y so
g(x,y) = y. Since x = y, we see that g is well-defined in this case because g(x,y) =z = y.

Case 3: If z > y, then > y and x £ y so g(x,y) = x is well-defined. This concludes the
proof that g is well-defined.

To show that g = f, we must show that for each (z,y) € R? we have g(z,y) = f(z,y).
Let (z,y) € R. By trichotomy (Axiom 3.1.2 (i)), we have that exactly one of the three
possibilities z < y, z =y, © > y is true.



Case 1: If x <y, then |z —y| =y — x so

T+ T — T+ -
vty le—yl ety oy

fla.y) = ——+— 5 5 =y =9y
Case 2: If x = y then
r+y |r—yl z+vy r+y x+zx
Case 3: If x >y, then |z —y| =2 —y so
zty |r—yl vty -y
Hence, we have shown that g = f. ]

#8.4 Proof. We are required to prove that for all € € RT, there exists N € Z*' such that
for all n € Z* with n > N we have 1/n < e. Given a positive real € € RT, we have 1/n < e
if and only if n > 1/e. Hence, if we choose N > 1/e then n > N > 1/e implies 1/n < € as
desired. O

Continuity(a): Proof. We are required to show that for each € > 0, there exists § > 0 such
that if z € R and 0 < | — 0| < 4, then |f(x) — 1| < e. Given € > 0, let 6 = min{e, 1}. Since
0 <1, we have x # 1, and thus

(x—1)(x+1)
r—1

f(x) = =rx+1 = |f(x) -1 =|(z+1)—1] =]z —0] <min{e, 1} <e. O

Continuity (b): Proof. To show that f is not continuous at x = 0, we must show that there
exists an € > 0 such that for all § > 0 there exists an x € R such that 0 < |z — 0] < 0 and
|f(xz) — f(0)| > €. Let e = 1/2. We will show that for all § > 0, there exists an € R such
that |z| < 0 and |f(z)] > 1/2. In part(a), we showed that lim, ., = 1. This means that
there exists a 0 > 0 such that for all z € R with |z| < § we have |f(z) — 1| < 1/4; in other
words all 2 € R with |z < § satisfy 3/4 < f(x) < 5/4. Consequently, for any § > 0, if we
choose € R such that |z| < min{é,d} then |z| < & and |f(z)| > 1/2. O



