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#7.2 (i) Counterexample: This is the statement that if m ∈ Z+ then

{n ∈ Z+ : m ≤ n} = Z+.

When m = 2, we have 1 /∈ {n ∈ Z+ : 2 ≤ n} so the set does not equal Z+.

(iii) Proof. This is the statement that if m ∈ Z+ then the set {n ∈ Z+ : m ≤ n} is
nonempty. Since m ∈ {n ∈ Z+ : m ≤ n}, we see that the statement is true for all integers
m ∈ Z+.

(v) Proof. This is the statement that if n ∈ Z+ then the set {m ∈ Z+ : m ≤ n} is
nonempty. Since n ∈ {m ∈ Z+ : m ≤ n}, we see that the statement is true for all integers
n ∈ Z+.

#7.4 (iii) Proof. This is the statement that if x ∈ R then the set {y ∈ R : xy = 0}
is nonempty. Since x · 0 = 0, we see that 0 ∈ {y ∈ R : xy = 0}, and hence the set is
nonempty.

(iv) Proof. This is the statement that the set {y ∈ R : ∀x ∈ R, xy = 0} is nonempty.
Since x ·0 = 0, we see that 0 ∈ {y ∈ R : ∀x ∈ R, xy = 0}, and hence the set is nonempty.

#8.1 Proof. To show that g is well-defined, we need to show that to each (x, y) ∈ R2, the
function g assigns a unique real number. Let (x, y) ∈ R. By trichotomy (Axiom 3.1.2 (i)),
we have that exactly one of the three possibilities x < y, x = y, x > y is true.

Case 1: If x < y, then x ≤ y and x 6≥ y so g(x, y) = y is well-defined.

Case 2: If x = y then x ≤ y so g(x, y) = x. We also have, however, that x ≥ y so
g(x, y) = y. Since x = y, we see that g is well-defined in this case because g(x, y) = x = y.

Case 3: If x > y, then x ≥ y and x 6≤ y so g(x, y) = x is well-defined. This concludes the
proof that g is well-defined.

To show that g = f , we must show that for each (x, y) ∈ R2 we have g(x, y) = f(x, y).
Let (x, y) ∈ R. By trichotomy (Axiom 3.1.2 (i)), we have that exactly one of the three
possibilities x < y, x = y, x > y is true.



Case 1: If x < y, then |x− y| = y − x so

f(x, y) =
x + y

2
+
|x− y|

2
=

x + y

2
+

y − x

2
= y = g(x, y)

Case 2: If x = y then

f(x, y) =
x + y

2
+
|x− y|

2
=

x + y

2
+ 0 =

x + y

2
=

x + x

2
= x = g(x, y).

Case 3: If x > y, then |x− y| = x− y so
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Hence, we have shown that g = f .

#8.4 Proof. We are required to prove that for all ε ∈ R+, there exists N ∈ Z+ such that
for all n ∈ Z+ with n ≥ N we have 1/n < ε. Given a positive real ε ∈ R+, we have 1/n < ε
if and only if n > 1/ε. Hence, if we choose N > 1/ε then n ≥ N > 1/ε implies 1/n < ε as
desired.

Continuity(a): Proof. We are required to show that for each ε > 0, there exists δ > 0 such
that if x ∈ R and 0 < |x− 0| < δ, then |f(x)− 1| < ε. Given ε > 0, let δ = min{ε, 1}. Since
δ ≤ 1, we have x 6= 1, and thus

f(x) =
(x− 1)(x + 1)

x− 1
= x + 1 ⇒ |f(x)− 1| = |(x + 1)− 1| = |x− 0| < min{ε, 1} ≤ ε.

Continuity (b): Proof. To show that f is not continuous at x = 0, we must show that there
exists an ε > 0 such that for all δ > 0 there exists an x ∈ R such that 0 < |x − 0| < δ and
|f(x)− f(0)| ≥ ε. Let ε = 1/2. We will show that for all δ > 0, there exists an x ∈ R such
that |x| < δ and |f(x)| > 1/2. In part(a), we showed that limx→0 = 1. This means that
there exists a δ̂ > 0 such that for all x ∈ R with |x| < δ̂ we have |f(x)− 1| < 1/4; in other
words all x ∈ R with |x| < δ̂ satisfy 3/4 < f(x) < 5/4. Consequently, for any δ > 0, if we
choose x ∈ R such that |x| < min{δ, δ̂} then |x| < δ and |f(x)| > 1/2.


