MATH 109 Assignment 3 Due: 4/18/11

#7.2 (i) Counterexample: This is the statement that if $m \in \mathbb{Z}^+$ then

$$\{n \in \mathbb{Z}^+ : m \le n\} = \mathbb{Z}^+.$$

When m=2, we have $1 \notin \{n \in \mathbb{Z}^+ : 2 \leq n\}$ so the set does not equal \mathbb{Z}^+ .

- (iii) **Proof.** This is the statement that if $m \in \mathbb{Z}^+$ then the set $\{n \in \mathbb{Z}^+ : m \leq n\}$ is nonempty. Since $m \in \{n \in \mathbb{Z}^+ : m \leq n\}$, we see that the statement is true for all integers $m \in \mathbb{Z}^+$.
- (v) **Proof.** This is the statement that if $n \in \mathbb{Z}^+$ then the set $\{m \in \mathbb{Z}^+ : m \leq n\}$ is nonempty. Since $n \in \{m \in \mathbb{Z}^+ : m \leq n\}$, we see that the statement is true for all integers $n \in \mathbb{Z}^+$.
- #7.4 (iii) **Proof.** This is the statement that if $x \in \mathbb{R}$ then the set $\{y \in \mathbb{R} : xy = 0\}$ is nonempty. Since $x \cdot 0 = 0$, we see that $0 \in \{y \in \mathbb{R} : xy = 0\}$, and hence the set is nonempty.
- (iv) **Proof.** This is the statement that the set $\{y \in \mathbb{R} : \forall x \in \mathbb{R}, xy = 0\}$ is nonempty. Since $x \cdot 0 = 0$, we see that $0 \in \{y \in \mathbb{R} : \forall x \in \mathbb{R}, xy = 0\}$, and hence the set is nonempty. \square
- #8.1 **Proof.** To show that g is well-defined, we need to show that to each $(x, y) \in \mathbb{R}^2$, the function g assigns a unique real number. Let $(x, y) \in \mathbb{R}$. By trichotomy (Axiom 3.1.2 (i)), we have that exactly one of the three possibilities x < y, x = y, x > y is true.
 - Case 1: If x < y, then $x \le y$ and $x \ge y$ so g(x, y) = y is well-defined.
- Case 2: If x = y then $x \le y$ so g(x, y) = x. We also have, however, that $x \ge y$ so g(x, y) = y. Since x = y, we see that g is well-defined in this case because g(x, y) = x = y.
- Case 3: If x > y, then $x \ge y$ and $x \not\le y$ so g(x,y) = x is well-defined. This concludes the proof that g is well-defined.

To show that g = f, we must show that for each $(x, y) \in \mathbb{R}^2$ we have g(x, y) = f(x, y). Let $(x, y) \in \mathbb{R}$. By trichotomy (Axiom 3.1.2 (i)), we have that exactly one of the three possibilities x < y, x = y, x > y is true. Case 1: If x < y, then |x - y| = y - x so

$$f(x,y) = \frac{x+y}{2} + \frac{|x-y|}{2} = \frac{x+y}{2} + \frac{y-x}{2} = y = g(x,y)$$

Case 2: If x = y then

$$f(x,y) = \frac{x+y}{2} + \frac{|x-y|}{2} = \frac{x+y}{2} + 0 = \frac{x+y}{2} = \frac{x+x}{2} = x = g(x,y).$$

Case 3: If x > y, then |x - y| = x - y so

$$f(x,y) = \frac{x+y}{2} + \frac{|x-y|}{2} = \frac{x+y}{2} + \frac{x-y}{2} = x = g(x,y).$$

Hence, we have shown that g = f.

#8.4 **Proof.** We are required to prove that for all $\epsilon \in \mathbb{R}^+$, there exists $N \in \mathbb{Z}^+$ such that for all $n \in \mathbb{Z}^+$ with $n \geq N$ we have $1/n < \epsilon$. Given a positive real $\epsilon \in \mathbb{R}^+$, we have $1/n < \epsilon$ if and only if $n > 1/\epsilon$. Hence, if we choose $N > 1/\epsilon$ then $n \geq N > 1/\epsilon$ implies $1/n < \epsilon$ as desired.

Continuity(a): **Proof.** We are required to show that for each $\epsilon > 0$, there exists $\delta > 0$ such that if $x \in \mathbb{R}$ and $0 < |x - 0| < \delta$, then $|f(x) - 1| < \epsilon$. Given $\epsilon > 0$, let $\delta = \min\{\epsilon, 1\}$. Since $\delta \leq 1$, we have $x \neq 1$, and thus

$$f(x) = \frac{(x-1)(x+1)}{x-1} = x+1 \implies |f(x)-1| = |(x+1)-1| = |x-0| < \min\{\epsilon, 1\} \le \epsilon. \quad \Box$$

Continuity (b): **Proof.** To show that f is not continuous at x=0, we must show that there exists an $\epsilon>0$ such that for all $\delta>0$ there exists an $x\in\mathbb{R}$ such that $0<|x-0|<\delta$ and $|f(x)-f(0)|\geq\epsilon$. Let $\epsilon=1/2$. We will show that for all $\delta>0$, there exists an $x\in\mathbb{R}$ such that $|x|<\delta$ and |f(x)|>1/2. In part(a), we showed that $\lim_{x\to 0}=1$. This means that there exists a $\hat{\delta}>0$ such that for all $x\in\mathbb{R}$ with $|x|<\hat{\delta}$ we have |f(x)-1|<1/4; in other words all $x\in\mathbb{R}$ with $|x|<\hat{\delta}$ satisfy 3/4< f(x)<5/4. Consequently, for any $\delta>0$, if we choose $x\in\mathbb{R}$ such that $|x|<\min\{\delta,\hat{\delta}\}$ then $|x|<\delta$ and |f(x)|>1/2.