Math 103A Fall 2007 Exam 2

November 19, 2007

NAME:

<table>
<thead>
<tr>
<th>Problem 1 /25</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Problem 2 /25</td>
<td></td>
</tr>
<tr>
<td>Problem 3 /20</td>
<td></td>
</tr>
<tr>
<td>Problem 4 /30</td>
<td></td>
</tr>
<tr>
<td>Total /100</td>
<td></td>
</tr>
</tbody>
</table>
Problem 1 (25 points)

(a) (5 pts). Clearly state Lagrange’s theorem.
(b) (20 pts) Let p be a prime number. Let G be a group with $|G| = p^n$ for some $n \geq 1$ (such a group is called a p-group.) Prove that G has at least one element of order p. (Hint: if you don’t know how to start, consider first the special case where $|G| = 9$.)
Problem 2 (25 points)

(a) (10 pts) Let G and \overline{G} be two groups. Define what it means for a function $\phi : G \rightarrow \overline{G}$ to be an isomorphism of groups.
(b) (15 pts) Define the following set of matrices:

\[G = \left\{ \begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix} \mid a \in \mathbb{Z} \right\}. \]

The set \(G \) is a group under matrix multiplication (you can assume this.)

Prove that \(G \cong \mathbb{Z} \), in other words that \(G \) is isomorphic to the group of integers with the operation of addition. Hint: you need to find a function \(\phi \) which gives the isomorphism—try something simple.
Problem 3 (20 points)

In this problem, we consider the group S_7 of permutations of $\{1, 2, 3, \ldots, 7\}$.

(a) (10 pts). Write the permutation $\alpha = (156)(3547)$ in disjoint cycle form. What is the order of this permutation in the group S_7?

(b) (10 pts). Explain why the permutation α in part (a) is an odd permutation. Then find a permutation $\beta \in S_7$ which is an even permutation but which has the same order in S_7 as the element α. Again briefly explain your answer.
Problem 4 (30 points)

In this problem, consider the following four groups: A_4, \mathbb{Z}_{12}, $U(21)$, D_6. These groups all have order 12 (you don’t have to prove this.) (Note that D_6 is the group of all symmetries of a regular hexagon so it contains six rotations and six reflections.)

(a) (10 pts) For each of the four groups, decide if it is Abelian or non-Abelian and list your answers below. Prove your answer only for the alternating group A_4.
(b) (20 pts) Prove that no two of the four groups A_4, \mathbb{Z}_{12}, $U(21)$, D_6 are isomorphic. You can assume without proof all of the basic properties of isomorphisms. (Starting hint: look for some elements of order 2 in $U(21)$.)
(more space for problem 4)