A graph $G = (V, E)$ consists of a vertex set V and an edge set E. A graph is used to describe relationships between data points.
A weighted graph $G = (V, E, w)$ is a graph in which each edge uv is associated with some weight $w_{uv} > 0$, $w_{uv} = w_{vu}$. Weighted graphs describe how strong relationships between data points are.
A connection graph $G = (V, E, O, w)$ additionally has a set of rotations: associated with each edge uv is a d-dimensional rotation $O_{uv} \in SO(d)$ such that $O_{uv} = O_{vu}^{-1}$.
Applications of connection graphs deal with high-dimensional data sets where scalar weights alone are insufficient to quantify affinities between data points.
Applications of connection graphs deal with high-dimensional data sets where scalar weights alone are insufficient to quantify affinities between data points.

Applications of connection graphs deal with high-dimensional data sets where scalar weights alone are insufficient to quantify affinities between data points.

Applications

- Applications of connection graphs deal with high-dimensional data sets where scalar weights alone are insufficient to quantify affinities between data points.
- In early work of Chung and Sternberg (1992) [4] connection graphs were used in graph gauge theory for computing the vibrational spectra of molecules examining spins associated with vibrations.
Feature detection

Detect features using SIFT [Lowe, IJCV 2004]
Feature matching

Match features between each pair of images
Applications

The Buckyball Molecule
The Combinatorial Laplacian

For a graph G define the Laplacian $L = D - A$ where $D(u, u) = d_u$ and A is the adjacency matrix.
For a graph G define the Laplacian $L = D - A$ where $D(u, u) = d_u$ and A is the adjacency matrix.

We think of L as an operator $\mathcal{F}(G, \mathbb{R}) = \{f : V(G) \to \mathbb{R}\}$, the space of real-valued functions on the vertex set, given by

$$Lf(u) = \sum_{v \in V, u \sim v} w_{uv} (f(u) - f(v)).$$
For a graph G define the Laplacian $L = D - A$ where $D(u, u) = d_u$ and A is the adjacency matrix.

We think of L as an operator $\mathcal{F}(G, \mathbb{R}) = \{f : V(G) \to \mathbb{R}\}$, the space of real-valued functions on the vertex set, given by

$$Lf(u) = \sum_{v \in V, u \sim v} w_{uv}(f(u) - f(v)).$$

L satisfies

$$f^T L f = \sum_{(u,v) \in E} w_{uv}(f(u) - f(v))^2.$$
We generalize this to \(\mathcal{F}(G, \mathbb{R}^d) = \{ f : V(G) \to \mathbb{R}^d \} \).
We generalize this to $\mathcal{F}(G, \mathbb{R}^d) = \{ f : V(G) \to \mathbb{R}^d \}$.

Define an operator \mathbb{L} on $\mathcal{F}(G, \mathbb{R}^d)$ by $\mathbb{L} = \mathbb{D} - \mathbb{A}$ where

\[
\mathbb{D}(u, u) = d_u I_{d \times d} \quad \text{and} \quad \mathbb{A}(u, v) = \begin{cases}
 w_{uv} O_{uv} & (u, v) \in E \\
 0_{d \times d} & (u, v) \notin E
\end{cases}
\]
We generalize this to $\mathcal{F}(G, \mathbb{R}^d) = \{f : V(G) \to \mathbb{R}^d\}$.

Define an operator \mathbb{L} on $\mathcal{F}(G, \mathbb{R}^d)$ by $\mathbb{L} = \mathbb{D} - \mathbb{A}$ where

$\mathbb{D}(u, u) = d_u I_{d \times d}$ and $\mathbb{A}(u, v) = \begin{cases} w_{uv} O_{uv} & (u, v) \in E \\ 0_{d \times d} & (u, v) \not\in E \end{cases}$

We can think of \mathbb{L} as an $n \times n$ matrix whose entries are $d \times d$ matrices, or as an $nd \times nd$ matrix.
We generalize this to $\mathcal{F}(G, \mathbb{R}^d) = \{f : V(G) \to \mathbb{R}^d\}$.

Define an operator L on $\mathcal{F}(G, \mathbb{R}^d)$ by $L = \mathbb{D} - \mathbb{A}$ where

\[
\mathbb{D}(u, u) = d_u I_{d \times d} \quad \text{and} \quad \mathbb{A}(u, v) = \begin{cases}
 w_{uv} O_{uv} & (u, v) \in E \\
 0_{d \times d} & (u, v) \notin E
\end{cases}
\]

We can think of L as an $n \times n$ matrix whose entries are $d \times d$ matrices, or as an $nd \times nd$ matrix.

L is called the connection Laplacian.
We generalize this to $\mathcal{F}(G, \mathbb{R}^d) = \{ f : V(G) \to \mathbb{R}^d \}$.

Define an operator \mathbb{L} on $\mathcal{F}(G, \mathbb{R}^d)$ by $\mathbb{L} = \mathbb{D} - \mathbb{A}$ where

$$
\mathbb{D}(u, u) = d_u I_{d \times d} \quad \text{and} \quad \mathbb{A}(u, v) = \begin{cases}
w_{uv} O_{uv} & (u, v) \in E \\
0_{d \times d} & (u, v) \notin E
\end{cases}
$$

We can think of \mathbb{L} as an $n \times n$ matrix whose entries are $d \times d$ matrices, or as an $nd \times nd$ matrix.

\mathbb{L} is called the connection Laplacian.

\mathbb{L} satisfies

$$
f^T \mathbb{L} f = \sum_{(u, v) \in E} w_{uv} \| O_{uv} f(u) - f(v) \|^2_2.
$$
A connection graph is consistent if for any cycle \((v_1, v_2, \ldots, v_k, v_1)\) of the underlying graph,
\[O_{v_kv_1} \prod_{i=1}^{k-1} O_{v_iv_{i+1}} = I_{d \times d}. \]
Consistency

Definition

A connection graph is *consistent* if for any cycle \((v_1, v_2, \ldots, v_k, v_1)\) of the underlying graph, \(O_{v_kv_1} \prod_{i=1}^{k-1} O_{v_iv_{i+1}} = I_{d \times d}\).

In other words, the product of rotations around any cycle is the identity.
Consistency

Definition

A connection graph is consistent if for any cycle \((v_1, v_2, \ldots, v_k, v_1)\) of the underlying graph, \(O_{v_k v_1} \prod_{i=1}^{k-1} O_{v_i v_{i+1}} = I_{d \times d}\).

In other words, the product of rotations around any cycle is the identity.

Equivalently, for any two vertices \(u, v\), the product of the rotations along any two distinct paths between \(u\) and \(v\) is the same.
Consistency

Theorem

Let G be a connection graph with dimension d and connection Laplacian L. The following are equivalent:

1. G is consistent.
2. For any two vertices u, v and paths P, P' from u to v, \[\prod_{xy \in P} O_{xy} = \prod_{zw \in P'} O_{zw}. \]
3. 0 is an eigenvalue of L with multiplicity d.
4. The eigenvalues of L are the eigenvalues of the Laplacian L of the underlying graph G with multiplicity d.
5. For each vertex v we have $O_v \in SO(d)$ such that $O_{uv} = O^{-1}_u O_v$ for all $(u, v) \in E$.

M. Kempton (UCSD)
Ranking and Sparsifying a Connection Graph
June 23, 2012
12 / 20
Consistency

Theorem

Let \(G \) be a connection graph with dimension \(d \) and connection Laplacian \(L \). The following are equivalent:

1. \(G \) is consistent.
2. For any two vertices \(u, v \) and paths \(P, P' \) from \(u \) to \(v \),
 \[
 \prod_{xy \in P} O_{xy} = \prod_{zw \in P'} O_{zw}.
 \]
Consistency

Theorem

Let \mathcal{G} be a connection graph with dimension d and connection Laplacian \mathbb{L}. The following are equivalent:

1. \mathcal{G} is consistent.
2. For any two vertices u, v and paths P, P' from u to v,
 \[\prod_{xy \in P} O_{xy} = \prod_{zw \in P'} O_{zw}. \]
3. 0 is an eigenvalue of \mathbb{L} with multiplicity d.

Consistency

Theorem

Let G be a connection graph with dimension d and connection Laplacian L. The following are equivalent:

- G is consistent.
- For any two vertices u, v and paths P, P' from u to v, $\prod_{xy \in P} O_{xy} = \prod_{zw \in P'} O_{zw}$.
- 0 is an eigenvalue of L with multiplicity d.
- The eigenvalues of L are the eigenvalues of the Laplacian L of the underlying graph G with multiplicity d.
Consistency

Theorem

Let G be a connection graph with dimension d and connection Laplacian L. The following are equivalent:

- G is consistent.
- For any two vertices u, v and paths P, P' from u to v, $\prod_{xy \in P} O_{xy} = \prod_{zw \in P'} O_{zw}$.
- 0 is an eigenvalue of L with multiplicity d.
- The eigenvalues of L are the eigenvalues of the Laplacian L of the underlying graph G with multiplicity d.
- For each vertex v we have $O_v \in SO(d)$ such that $O_{uv} = O_u^{-1}O_v$ for all $(u, v) \in E$.
Consistency

Proof:
Construct eigenvectors as follows:

For a fixed vertex u, choose a starting vector $x \in \mathbb{R}^d$ and let $f(u) = x$. For $v \sim u$ set $f(v) = O_{uv} f(u)$. Since G is consistent we can continue in this manner defining f on every vertex. Then by construction $f^T L f = \sum_{(u,v) \in E} w_{uv} ||O_{uv} f(u) - f(v)||_2^2 = 0$ so f is an eigenvector with eigenvalue 0.

d_orthonormal choices for the starting vector x lead to d orthogonal eigenvectors corresponding to 0. The remaining eigenvectors can be constructed taking the tensor product of these vectors with the eigenvectors of the combinatorial Laplacian L.
Proof:
Construct eigenvectors as follows:
For a fixed vertex u, choose a starting vector $x \in \mathbb{R}^d$ and let $f(u) = x$.

For $v \sim u$ set $f(v) = O_{uv}f(u)$.

Since G is consistent we can continue in this manner defining f on every vertex.
Then by construction $f^T L f = \sum_{(u,v) \in E} w_{uv} ||O_{uv}f(u) - f(v)||^2 = 0$ so f is an eigenvector with eigenvalue 0.

d orthonormal choices for the starting vector x lead to d orthogonal eigenvectors corresponding to 0.
The remaining eigenvectors can be constructed taking the tensor product of these vectors with the eigenvectors of the combinatorial Laplacian L.
Consistency

Proof:
Construct eigenvectors as follows:
For a fixed vertex u, choose a starting vector $x \in \mathbb{R}^d$ and let $f(u) = x$.
For $v \sim u$ set $f(v) = O_{uv} f(u)$.

Since G is consistent we can continue in this manner defining f on every vertex.
Then by construction $f^T L f = \sum_{(u, v) \in E} w_{uv} |f(u) - f(v)|^2 = 0$ so f is an eigenvector with eigenvalue 0.

d orthonormal choices for the starting vector x lead to d orthonormal eigenvectors corresponding to 0.
The remaining eigenvectors can be constructed taking the tensor product of these vectors with the eigenvectors of the combinatorial Laplacian L.
Consistency

Proof:
Construct eigenvectors as follows:
For a fixed vertex u, choose a starting vector $x \in \mathbb{R}^d$ and let $f(u) = x$. For $v \sim u$ set $f(v) = O_{uv}f(u)$. Since G is consistent we can continue in this manner defining f on every vertex.
Consistency

Proof:
Construct eigenvectors as follows:
For a fixed vertex u, choose a starting vector $x \in \mathbb{R}^d$ and let $f(u) = x$.

For $v \sim u$ set $f(v) = O_{uv} f(u)$.

Since \mathbb{G} is consistent we can continue in this manner defining f on every vertex.

Then by construction $f^T \mathbb{I} f = \sum_{(u,v) \in E} w_{uv} ||O_{uv} f(u) - f(v)||^2_2 = 0$ so f is an eigenvector with eigenvalue 0.
Proof:
Construct eigenvectors as follows:
For a fixed vertex u, choose a starting vector $x \in \mathbb{R}^d$ and let $f(u) = x$. For $v \sim u$ set $f(v) = O_{uv}f(u)$. Since G is consistent we can continue in this manner defining f on every vertex. Then by construction $f^T \mathbb{L} f = \sum_{(u,v) \in E} w_{uv} \|O_{uv}f(u) - f(v)\|_2^2 = 0$ so f is an eigenvector with eigenvalue 0. d orthonormal choices for the starting vector x lead to d orthogonal eigenvectors corresponding to 0.
Consistency

Proof:
Construct eigenvectors as follows:
For a fixed vertex u, choose a starting vector $x \in \mathbb{R}^d$ and let $f(u) = x$.
For $v \sim u$ set $f(v) = O_{uv}f(u)$.
Since G is consistent we can continue in this manner defining f on every vertex.
Then by construction $f^T L f = \sum_{(u,v) \in E} w_{uv} \|O_{uv}f(u) - f(v)\|_2^2 = 0$ so f is an eigenvector with eigenvalue 0.
d orthonormal choices for the starting vector x lead to d orthogonal eigenvectors corresponding to 0.
The remaining eigenvectors can be constructed taking the tensor product of these vectors with the eigenvectors of the combinatorial Laplacian L.
Consistency

Proof:
Technique 1: For a fixed vertex u, choose a frame O_u consisting of d orthonormal vectors.
Then for any vertex v, given a path $u = v_0, v_1, \ldots, v_t = v$ from u to v, define

$$O_v = O_u \prod_{i=0}^{t-1} O_{v_i v_{i+1}}.$$
Consistency

Proof:
Technique 1: For a fixed vertex u, choose a frame O_u consisting of d orthonormal vectors. Then for any vertex v, given a path $u = v_0, v_1, \ldots, v_t = v$ from u to v, define

$$O_v = O_u \prod_{i=0}^{t-1} O_{v_i v_{i+1}}.$$

Technique 2: Use the eigenvectors of the Connection Laplacian to create the matrices O_v. (Singer, Spielman 2012 [5])
For a graph G, denote the transition probability matrix for a random walk on G by $P = D^{-1}A$, and let $Z = \frac{1}{2}(I + P)$ be the matrix for the lazy random walk.
For a graph G, denote the transition probability matrix for a random walk on G by $P = D^{-1}A$, and let $Z = \frac{1}{2}(I + P)$ be the matrix for the lazy random walk.

For a seed probability distribution vector s and jumping constant $0 < \alpha < 1$, a PageRank vector $pr_{\alpha,s} : V \rightarrow \mathbb{R}$ satisfies

$$pr_{\alpha,s} = \alpha s + (1 - \alpha) pr_{\alpha,s} Z.$$
Similarly, define $P = D^{-1}A$ and $Z = \frac{1}{2}(I + P)$ to be the transition probability matrix for the lazy random walk on the connection graph G.
Similarly, define $P = D^{-1}A$ and $Z = \frac{1}{2}(I + P)$ to be the transition probability matrix for the lazy random walk on the connection graph G.

For an initial seed vector $\hat{s}: V \rightarrow \mathbb{R}^d$, we can define $\hat{pr}_{\alpha,\hat{s}}: V \rightarrow \mathbb{R}^d$ to satisfy the relation

$$\hat{pr}_{\alpha,\hat{s}} = \alpha \hat{s} + (1 - \alpha) \hat{pr}_{\alpha,\hat{s}} Z.$$
A PageRank vector can be used to measure how close a connection graph is to being consistent.
A PageRank vector can be used to measure how close a connection graph is to being consistent.

Define the inconsistency coefficient

\[
\omega_G = \max_{u \in V} \sup_{\hat{\chi}_u} \frac{\sum_{u \in V} ||[\hat{pr}_{\alpha,\hat{\chi}_u} \mathbb{Z}](v)||_2}{\sum_{u \in V} ||\hat{pr}_{\alpha,\hat{\chi}_u}(v)||_2}
\]

Theorem

\[\omega_G \leq 1\]

If \(G \) is consistent, then \(\omega_G = 1 \).
A PageRank vector can be used to measure how close a connection graph is to being consistent.

Define the inconsistency coefficient

\[\omega_G = \max_{u \in V} \sup_{\hat{\chi}_u} \frac{\sum_{u \in V} ||[\hat{pr}_{\alpha,\hat{\chi}_u} \mathbb{Z}](v)||_2}{\sum_{u \in V} ||\hat{pr}_{\alpha,\hat{\chi}_u}(v)||_2} \]

Theorem

- \(\omega_G \leq 1 \)

- *If* \(G \) *is consistent, then* \(\omega_G = 1 \).
In a graph, the effective resistance of an edge $e = (u, v)$ is given by

$$R_{eff}(u, v) = 1_e^T B L^+ B^T 1_e$$

where L^+ denotes the pseudo-inverse of the Laplacian of the graph, and B is the incidence matrix.
In a graph, the effective resistance of an edge $e = (u, v)$ is given by

$$R_{\text{eff}}(u, v) = 1_e^T B L^+ B^T 1_e$$

where L^+ denotes the pseudo-inverse of the Laplacian of the graph, and B is the incidence matrix.

Generalize this to connection graphs by defining $\Pi = BL^+ B^T$ and define the connection resistance as

$$R_{\text{eff}}(u, v) = ||\Pi(e, e)||_2.$$
Connection Resistance is used to rank edges in a connection graph.

Edge Ranking Algorithm: For each edge e of G, assign to each edge the value $p'_e = w_e R_{eff}(e)$.

Select edges according to probability p_e proportional to p'_e.

M. Kempton (UCSD) Ranking and Sparsifying a Connection Graph June 23, 2012 19 / 20
Connection Resistance is used to rank edges in a connection graph.

Edge Ranking Algorithm: For each edge e of G, assign to each edge the value $p'_e = w_e R_{\text{eff}}(e)$.

Select edges according to probability p_e proportional to p'_e.

M. Kempton (UCSD)
Ranking and Sparsifying a Connection Graph
June 23, 2012
19 / 20
Connection Resistance is used to rank edges in a connection graph.

Edge Ranking Algorithm: For each edge e of G, assign to each edge the value $p'_e = w_e R_{	ext{eff}}(e)$.

Select edges according to probability p_e proportional to p'_e.

M. Kempton (UCSD)
Ranking and Sparsifying a Connection Graph
June 23, 2012 19 / 20

A. Bandeira, A. Singer and D. Spielman, A Cheeger Inequality for the Graph Connection Laplacian, to appear.