Minimum Rank of Outerplanar Graphs

Mark Kempton
BYU Mathematics Department

Spring Research Conference
Provo, UT
March 20, 2010
The Minimum Rank Problem

Given a graph G on n vertices, define $S(G)$ to be the set of $n \times n$ symmetric matrices whose zero-nonzero pattern is given by the edges of G.
The Minimum Rank Problem

Given a graph G on n vertices, define $S(G)$ to be the set of $n \times n$ symmetric matrices whose zero-nonzero pattern is given by the edges of G.

\[
\begin{pmatrix}
1 & 1 & 1 & 0 \\
1 & 1 & 1 & 0 \\
1 & 1 & 2 & 1 \\
0 & 0 & 1 & 1 \\
\end{pmatrix},
\begin{pmatrix}
0 & 1 & -1 & 0 \\
1 & 0 & -1 & 2 & 0 \\
-1 & -1 & 0 & 5 \\
0 & 0 & 5 & 0 \\
\end{pmatrix} \in S(G)
\]
Given a graph G on n vertices, define $S(G)$ to be the set of $n \times n$ symmetric matrices whose zero-nonzero pattern is given by the edges of G.

\[
\begin{bmatrix}
1 & 1 & 1 & 0 \\
1 & 1 & 1 & 0 \\
1 & 1 & 2 & 1 \\
0 & 0 & 1 & 1
\end{bmatrix}, \quad \begin{bmatrix}
0 & 1 & -1 & 0 \\
1 & 0 & -2 & 0 \\
-1 & -2 & 0 & 5 \\
0 & 0 & 5 & 0
\end{bmatrix} \in S(G)
\]
Define the minimum rank of G, denoted $mr(G)$, to be the minimum rank over all matrices in $S(G)$. Since $mr(G) + M(G) = n$, computing the minimum rank and the maximum nullity are equivalent problems. Computing $M(G)$ or $mr(G)$ for a given graph is hard.
Define the minimum rank of G, denoted $mr(G)$, to be the minimum rank over all matrices in $S(G)$.

Denote by $M(G)$ the maximum nullity of G.
Define the minimum rank of G, denoted $mr(G)$, to be the minimum rank over all matrices in $S(G)$.

Denote by $M(G)$ the maximum nullity of G.

Since $mr(G) + M(G) = n$, computing the minimum rank and the maximum nullity are equivalent problems.
Define the minimum rank of G, denoted $mr(G)$, to be the minimum rank over all matrices in $S(G)$.

Denote by $M(G)$ the maximum nullity of G.

Since $mr(G) + M(G) = n$, computing the minimum rank and the maximum nullity are equivalent problems.

Computing $M(G)$ or $mr(G)$ for a given graph is hard.
Let K_n be the complete graph on n vertices.
Let K_n be the complete graph on n vertices. Then $mr(K_n) = 1$.

\[
\begin{bmatrix}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
\end{bmatrix}
\]
Let K_n be the complete graph on n vertices. Then $mr(K_n) = 1$.

Let S_n be the star on n vertices.
Minimum Rank of Some Graphs

- Let K_n be the complete graph on n vertices. Then $mr(K_n) = 1$.

\[
\begin{bmatrix}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
\end{bmatrix}
\]

- Let S_n be the star on n vertices. Then $mr(S_n) = 2$.

\[
\begin{bmatrix}
1 & 1 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
\end{bmatrix}
\]
Let C_n be the cycle on n vertices.
Let C_n be the cycle on n vertices. Then $mr(C_n) = n - 2$.

$$
\begin{bmatrix}
1 & 1 & 0 & 0 & 1 \\
1 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & -1 & 0 \\
0 & 0 & -1 & 0 & 1 \\
1 & 0 & 0 & 1 & 1
\end{bmatrix}
$$
Let C_n be the cycle on n vertices. Then $mr(C_n) = n - 2$.

\[
\begin{bmatrix}
1 & 1 & 0 & 0 & 1 \\
1 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & -1 & 0 \\
0 & 0 & -1 & 0 & 1 \\
1 & 0 & 0 & 1 & 1
\end{bmatrix}
\]

Idea

Our main idea will be to compute the minimum rank of a graph by covering it with graphs whose minimum rank is known.
Clique Cover Number

Definition

The **clique cover number** of a graph G is the minimum number of cliques needed to cover all the vertices and edges of G. It is denoted $cc(G)$.
Definition
The **clique cover number** of a graph G is the minimum number of cliques needed to cover all the vertices and edges of G. It is denoted $cc(G)$.

Fact
*If A and B are two $n \times n$ matrices, then $\text{rank}(A + B) \leq \text{rank}(A) + \text{rank}(B)$.***
Clique Cover Number

Definition

The **clique cover number** of a graph G is the minimum number of cliques needed to cover all the vertices and edges of G. It is denoted $cc(G)$.

Fact

If A and B are two $n \times n$ matrices, then $\text{rank}(A + B) \leq \text{rank}(A) + \text{rank}(B)$.

Theorem

For any graph G, $mr(G) \leq cc(G)$.
Example

\[\begin{pmatrix}
1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
\end{pmatrix}
+ \begin{pmatrix}
0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 1 \\
\end{pmatrix}
= \begin{pmatrix}
1 & 1 & 1 & 0 & 0 \\
1 & 2 & 2 & 1 & 1 \\
1 & 2 & 2 & 1 & 1 \\
0 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 1 \\
\end{pmatrix} \]
Example

\[
\begin{pmatrix}
1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}
\begin{pmatrix}
0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 1
\end{pmatrix}
=
\begin{pmatrix}
1 & 1 & 1 & 0 & 0 \\
1 & 2 & 2 & 1 & 1 \\
1 & 2 & 2 & 1 & 1 \\
0 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 1
\end{pmatrix}
\]
Example
Example

\[
\begin{bmatrix}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{bmatrix},
\begin{bmatrix}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{bmatrix}
\]
Example

\[
\begin{bmatrix}
1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}
,
\begin{bmatrix}
0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 1 \\
\end{bmatrix}
,
\begin{bmatrix}
1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 1 \\
\end{bmatrix}
\]
Example

\[
\begin{bmatrix}
1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
\end{bmatrix} + \begin{bmatrix}
0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 1 \\
\end{bmatrix} = \begin{bmatrix}
1 & 1 & 1 & 0 & 0 \\
1 & 2 & 2 & 1 & 1 \\
1 & 2 & 2 & 1 & 1 \\
0 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 1 \\
\end{bmatrix}
\]
Example

\[
\begin{bmatrix}
1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix} + \begin{bmatrix}
0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 1 & 1 & 0 & 0 \\
1 & 2 & 2 & 1 & 1 \\
1 & 2 & 2 & 1 & 1 \\
0 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 1
\end{bmatrix}
\]
There are several graphs for which $mr(G) = cc(G)$. A cycle is an example where equality does not hold. $mr(C_n) = n - 2 < n = cc(C_n)$. A star is another example. The clique cover number is way too big. $mr(S_n) = 2 < n - 1 = cc(S_n)$.
There are several graphs for which $mr(G) = cc(G)$.

A cycle is an example where equality does not hold.

$$mr(C_n) = n - 2 < n = cc(C_n)$$
There are several graphs for which $mr(G) = cc(G)$.

A cycle is an example where equality does not hold.

$$mr(C_n) = n - 2 < n = cc(C_n)$$

A star is another example. The clique cover number is way too big.

$$mr(S_n) = 2 < n - 1 = cc(S_n)$$
Definition

Given a graph G, a collection \mathcal{C} of subgraphs of G is said to cover G if every edge and every vertex is in some member of \mathcal{C}.

We define the rank sum of a cover, $rs(\mathcal{C})$, to be the sum of the minimum ranks of the graphs in \mathcal{C}.

The same proof that $mr(G) \leq cc(G)$ works to show that:

Lemma

For any graph G and any cover \mathcal{C} of G, $mr(G) \leq rs(\mathcal{C})$.

M. Kempton (BYU)
Minimum Rank of Outerplanar Graphs
March 20, 2010
Definition

- Given a graph G, a collection \mathcal{C} of subgraphs of G is said to cover G if every edge and every vertex is in some member of \mathcal{C}.
- We define the rank sum of a cover, $rs(\mathcal{C})$, to be the sum of the minimum ranks of the graphs in \mathcal{C}.
Generalizing the Clique Cover Number

Definition

- Given a graph G, a collection \mathcal{C} of subgraphs of G is said to cover G if every edge and every vertex is in some member of \mathcal{C}.
- We define the rank sum of a cover, $rs(\mathcal{C})$, to be the sum of the minimum ranks of the graphs in \mathcal{C}.

The same proof that $mr(G) \leq cc(G)$ works to show that:
Generalizing the Clique Cover Number

Definition

- Given a graph G, a collection \mathcal{C} of subgraphs of G is said to cover G if every edge and every vertex is in some member of \mathcal{C}.
- We define the rank sum of a cover, $rs(\mathcal{C})$, to be the sum of the minimum ranks of the graphs in \mathcal{C}.

The same proof that $mr(G) \leq cc(G)$ works to show that:

Lemma

For any graph G and any cover \mathcal{C} of G,

$$mr(G) \leq rs(\mathcal{C})$$
When can we find a cover for a graph using a few simple kinds of graphs whose minimum rank is known that will achieve the minimum rank?
Definition

A graph G is **outerplanar** if it is planar and every vertex is on the exterior face.
A graph G is **outerplanar** if it is planar and every vertex is on the exterior face.
A graph G is **outerplanar** if it is planar and every vertex is on the exterior face.

Given a graph G, a **k-separation** of G is a pair of subgraphs of G, G_1, G_2 with k vertices in common and with $G = G_1 \cup G_2$.
Outerplanar Graphs

Definition

A graph G is **outerplanar** if it is planar and every vertex is on the exterior face.

Definition

Given a graph G, a **k-separation** of G is a pair of subgraphs of G, G_1, G_2 with k vertices in common and with $G = G_1 \cup G_2$.
Definition
A graph G is **outerplanar** if it is planar and every vertex is on the exterior face.

Definition
Given a graph G, a **k-separation** of G is a pair of subgraphs of G, G_1, G_2 with k vertices in common and with $G = G_1 \cup G_2$.
Definition

A graph G is **outerplanar** if it is planar and every vertex is on the exterior face.

Definition

Given a graph G, a k-**separation** of G is a pair of subgraphs of G, G_1, G_2 with k vertices in common and with $G = G_1 \cup G_2$.

![Graph Diagram](image-url)
A graph G is **outerplanar** if it is planar and every vertex is on the exterior face.

Definition

Given a graph G, a **k-separation** of G is a pair of subgraphs of G, G_1, G_2 with k vertices in common and with $G = G_1 \cup G_2$.
Theorem (Hsieh; Barioli, Fallat, Hogben)

Let \((G_1, G_2)\) be a 1-separation of \(G\).

\[\text{mr}(G) = \min\{\text{mr}(G_1) + \text{mr}(G_2), \text{mr}(G_1 - v) + \text{mr}(G_2 - v) + 2\}\]
Some Tools

Theorem (Hsieh; Barioli, Fallat, Hogben)

Let \((G_1, G_2)\) be a 1-separation of \(G\).

\[
\text{mr}(G) = \min\{\text{mr}(G_1) + \text{mr}(G_2), \text{mr}(G_1 - v) + \text{mr}(G_2 - v) + 2\}
\]

Theorem (van der Holst)

Let \((G_1, G_2)\) be a 2-separation of \(G\).

\[
\text{mr}(G) = \min\{\text{mr}(G_1) + \text{mr}(G_2),
\quad \text{mr}(G_1 - r_1) + \text{mr}(G_2 - r_1) + 2,
\quad \text{mr}(G_1 - r_2) + \text{mr}(G_2 - r_2) + 2,
\quad \text{mr}(G_1 - R) + \text{mr}(G_2 - R) + 4,
\quad \text{mr}(H_1) + \text{mr}(H_2),
\quad \text{mr}(\overline{G_1}) + \text{mr}(\overline{G_2}) + 2\}
\]
Main Result

Theorem

*If G is an outerplanar graph, then there is a cover of G consisting of cliques, stars, and cycles whose rank sum equals the minimum rank of G.***
Main Result

Theorem

If G is an outerplanar graph, then there is a cover of G consisting of cliques, stars, and cycles whose rank sum equals the minimum rank of G.

Idea of proof: We use induction and the fact that an outerplanar graph always has a 1- or 2-separation, and then apply the formulas.
Theorem

If G is an outerplanar graph, then there is a cover of G consisting of cliques, stars, and cycles whose rank sum equals the minimum rank of G.

- Idea of proof: We use induction and the fact that an outerplanar graph always has a 1- or 2-separation, and then apply the formulas.
- This gives a solution to the minimum rank problem for outerplanar graphs.
So far we have been implicitly assuming that the entries of the matrices involved are real numbers.
So far we have been implicitly assuming that the entries of the matrices involved are real numbers.

We use \(mr^F(G) \) to denote the minimum rank of a graph where the entries of the matrices are taken from the field \(F \).
So far we have been implicitly assuming that the entries of the matrices involved are real numbers.

We use $mr^F(G)$ to denote the minimum rank of a graph where the entries of the matrices are taken from the field F.

Sometimes the field matters in questions of minimum rank, but in many situations, the minimum rank is the same no matter what field we work over. We call such graphs **field independent**.
The formulas for 1-separations and 2-separations work over any field.
The formulas for 1-separations and 2-separations work over any field.

With some tweaking, we can get the proof of our main result to work over any field.
The formulas for 1-separations and 2-separations work over any field.

With some tweaking, we can get the proof of our main result to work over any field.

Corollary

The minimum rank of an outerplanar graph is field independent.
Open Questions

Question

Are there other classes of graphs whose minimum rank can be given by covers using cliques, stars, and cycles?
Open Questions

Question

Are there other classes of graphs whose minimum rank can be given by covers using cliques, stars, and cycles?

Question

What other kinds of graphs need to be considered in covers to extend this result to larger classes of graphs?
Open Questions

Question
Are there other classes of graphs whose minimum rank can be given by covers using cliques, stars, and cycles?

Question
What other kinds of graphs need to be considered in covers to extend this result to larger classes of graphs?
Open Questions

Question
Are there other classes of graphs whose minimum rank can be given by covers using cliques, stars, and cycles?

Question
What other kinds of graphs need to be considered in covers to extend this result to larger classes of graphs?

Question
Do all rank minimizing matrices of an outerplanar graph necessarily come from sums of rank minimizing matrices for graphs in the cover?