\section*{MATH 170B ASSIGNMENT 2}

\section*{§3.1, 4:} Derive the formula
\[n \geq \frac{\log(b_0 - a_0) - \log \epsilon}{\log 2} - 1 \]
involving \(b_0 - a_0 \) and \(\epsilon \) for the number of steps \(n \) that must be taken in the bisection method to guarantee that \(|\alpha - \alpha_n| \leq \epsilon \).

\section*{§3.1, 5:} Derive the formula
\[n \geq \frac{\log(b_0 - a_0) - \log \epsilon - \log a_0}{\log 2} - 1 \]
involving \(a_0, b_0, \) and \(\epsilon \) for the number of steps \(n \) that should be taken in the bisection algorithm to ensure that the root is determined with relative accuracy \(\leq \epsilon \). Assume \(a_0 > 0 \).

\section*{§3.1, 7:} If the bisection method is used starting with the interval \([2, 3]\), how many steps must be taken to compute a root with absolute accuracy \(< 10^{-6} \)? Answer the same question for the relative accuracy. What about to full precision on the \textit{Marc-32} in each case?

\section*{§3.2, 5:} What is the purpose of the following iteration formula?
\[x_{n+1} = 2x_n - x_n^2 y \]
Identify it as the Newton iteration for a certain function.

\section*{§3.2, 10:} Devise a Newton iteration formula for computing \(\sqrt[3]{R} \) where \(R > 0 \). Perform a graphical analysis of your function \(f(x) \) to determine the starting values for which the iteration will converge.

\section*{§3.2, 15:} Consider a variation of Newton’s method in which only one derivative is needed; that is,
\[x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \]
Find \(C \) and \(s \) such that \(e_{n+1} = Ce_n^s \).

\section*{§3.2, 19*:} Prove that if \(r \) is a zero of multiplicity \(k \) of the function \(f \), then quadratic convergence in Newton’s method will be restored by making this modification:
\[x_{n+1} = x_n - k \frac{f(x_n)}{f'(x_n)} \]

\section*{§3.2, 23(a):} Perform two iterations of Newton’s method on this system,
\[4x_1^2 - x_2^2 = 0 \]
\[4x_1x_2^2 - x_1 = 1 \]
starting with \((0, 1)\).

\section*{§3.3, 7:} Prove that the formula for the secant method can be written in the form
\[x_{n+1} = \frac{f(x_n)x_{n-1} - x_nf(x_{n-1})}{f(x_n) - f(x_{n-1})} \]
Explain why this formula is inferior to Equation (3) in practice.