1. Compute the first 5 terms in the Taylor series (constant, linear, quadratic, cubic, and quartic pieces) for the following functions:
 (a) \(f(x) = \sqrt{4x - x^2} \), about the point \(x = 2 \)
 (b) \(f(x) = 3\tan(x) \), about the point \(x = \pi/4 \)

2. Using the results from Problem 1(a), make a single MATLAB plot which contains all of the following:
 (a) a graph of \(f(x) = \sqrt{4x - x^2} \) versus \(x \) for \(x \in (0, 4) \).
 (b) a graph of \(p_0(x) \).
 (c) a graph of \(p_2(x) \).
 (d) a graph of \(p_4(x) \).
 (e) a title, \(x \)-axis label, \(y \)-axis label, and a legend.

3. The quotient
 \[g(x) = \frac{\log(1 + xe^x)}{x} \]

 seems at first glance to be undefined at \(x = 0 \). Approximate \(\log(1 + xe^x) \) by a Taylor polynomial of degree 2 about the point \(x = 0 \). Use this Taylor approximation to determine a natural definition of \(g(0) \).

4. Consider the function \(f(x) = 1/(1 - x) \).
 (a) Obtain the infinite Taylor series representation of \(f(x) \) about the point \(x = 0 \).
 (b) Obtain the infinite Taylor series representation of \(g(t) = 1/(1 + t^2) \) about \(t = 0 \).
 Do this by substituting \(x = -t^2 \) into the Taylor expansion of \(f(x) \).
 (c) Obtain the infinite Taylor series representation of \(\tan^{-1}(x) \) about \(x = 0 \). Do this by integrating the result in (b):
 \[\tan^{-1}(x) = \int_0^x \frac{1}{1 + t^2} \, dt. \]

5. Consider the function \(g(x) = e^x \).
 (a) Derive the general \(n^{th} \) order Taylor polynomial \((p_n(x)) \) as well the remainder term \((R_n(x)) \) for the function \(g(x) \) expanded about the point \(x = 0 \).
(b) Using the remainder term from part (a), determine the value of n needed to guarantee that $|p_n(1) - g(1)| < 10^{-5}$.

6. Consider the following:

$$x_n = 1 - \cos\left(\frac{\pi}{n}\right)$$

$$y_n = 2 \sin^2\left(\frac{\pi}{2n}\right)$$

NOTE: From trigonometry we know that $x_n = y_n$ since $\sin^2(\theta) = \frac{1}{2} (1 - \cos(2\theta))$.

(a) Subplot #1: Plot x_n and y_n versus n for $n = 1, \ldots, 1000$ on a single log-log plot using the `loglog` command. Use a solid line for x_n and open circles for y_n.

(b) Subplot #2: Plot the relative error $|x_n - y_n|/|y_n|$ on a log-log plot using the `loglog` command.

(c) As n becomes large, which one (x_n or y_n) is more accurate? Why? (HINT: recall the 2 situations that you want to avoid when doing computer arithmetic.)