1. Consider the following linear system,

\[A\vec{x} = \vec{b} \]

where \(A \) is the following matrix,

\[
A = \begin{pmatrix}
0 & 1 & 4 & 5 \\
2 & 0 & 2 & 4 \\
2 & 4 & 0 & 1 \\
1 & -3 & -5 & 0
\end{pmatrix}
\]

(a) Determine the \(P, L, U \) decomposition of the matrix \(A \), such that \(PA = LU \).
(Show EACH STEP in the decomposition.)

(b) Use the \(P, L, U \) decomposition found in (a) to find the solution to \(A\vec{x} = \begin{pmatrix} 2 \\ -2 \\ 0 \\ 1 \end{pmatrix} \)
(Show ALL relevant steps).

(c) Use the \(P, L, U \) decomposition found in (a) to find the solution to \(A\vec{x} = \begin{pmatrix} 0 \\ 1 \\ 5 \\ 2 \end{pmatrix} \)
(Show ALL relevant steps).

2. **SOURCE CODE:**

Write separate MATLAB functions for **LU decomposition with partial pivoting**, **forward substitution**, and **backward substitution**. I recommend using the pseudocode provided in the lecture notes. These functions should be written so that they can be used to solve \(A\vec{x} = \vec{b} \) in the following way:

- LU decomposition:
 \([L,U,P]=LUdecomp(A,m)\)
• Solve $L\vec{y} = P\vec{b}$:
 \[
 \vec{y} = \text{ForwardSubs}(L, P*\vec{b}, m)
 \]
• Solve $U\vec{x} = \vec{y}$:
 \[
 \vec{x} = \text{BackwardSubs}(U, \vec{y}, m)
 \]

CAUTION: If you type something like:

  ```matlab
  for i=1:10
  x(i) = i;
  end,
  ```

MATLAB will create a row vector of length 1×10. We always want a column vector, in which case you should type:

  ```matlab
  for i=1:10
  x(i,1) = i;
  end.
  ```

This will create a vector of length 10×1.

3. **DISCUSSION QUESTION:**

For the linear system

\[
\begin{align*}
-x_3 + 3x_4 &= 0 \\
-x_1 + 2x_2 - x_3 &= -1 \\
3x_1 - x_2 &= 0 \\
-x_2 + 2x_3 - x_4 &= 1
\end{align*}
\]

do all of the following:

- Solve this system using the $\vec{x} = A\backslash\vec{b}$ command in MATLAB.
- Use your LU decomposition with forward/backward substitution to solve this problem.
- Make sure that the answers agree.

4. **APPLICATION PROBLEM:**

In mathematical biology, integral equations of the form shown below arise when modeling the population of an invading organisms into an ecosystem (Wang, Kot, & Neubert, 2002):

\[
N(x - c) - \lambda \int_0^{\infty} K(x, y)N(y) \, dy = f(x).
\]

The organism being modeled by the above equation has both a growth and dispersal stage. $N(x)$ is the population of the invading species at spatial location x, $K(x, y)$
is the probability density function for dispersal from a source y, and $f(x)$ is related to the growth rate of the population.

We will attempt to approximately solve the above integral equation for the population $N(x)$ using numerical linear algebra. Consider an example where $c = 0$, $\lambda = 5$, and

$$K(x, y) = \frac{1}{\pi + \pi(x - y)^2}$$

$$f(x) = \frac{1}{2} - \frac{1}{\pi} \arctan(x).$$

We define the following quantities:

$m = "The number of points in our approximation"
$D = 70$
$h = D/(m - 1)$
$x_i = -7 + (i - 1) \cdot (h/5)$
$y_j = 0 + (j - 1) \cdot h$
$f_i = 1/2 - (1/\pi) \arctan(x_i)$
$N_i \approx N(x_i) = "approximation to N(x)"
$K_{ij} = K(x_i, y_j)$
$I = "the m \times m identity matrix".$

We replace the integral by a Riemann sum (we will talk about this in much more detail later in the semester):

$$\int_0^\infty K(x_i, y)N(y)\,dy \approx \int_0^D K(x_i, y)N(y)\,dy \approx h \left[\frac{1}{2}K_{11}N_1 + \sum_{j=2}^{m-1} K_{ij}N_j + \frac{1}{2}K_{mm}N_m \right].$$

The original integral equation can now be re-written as a system of linear equations:

$$A\vec{N} = \vec{f},$$

where

$$\vec{N} = \begin{bmatrix} N_1 \\ N_2 \\ \vdots \\ N_m \end{bmatrix}, \quad \vec{f} = \begin{bmatrix} f_1 \\ f_2 \\ \vdots \\ f_m \end{bmatrix}, \quad A = I - h\lambda \begin{bmatrix} \frac{1}{2}K_{11} & K_{12} & K_{13} & \cdots & K_{1,m-1} & \frac{1}{2}K_{1m} \\ \frac{1}{2}K_{21} & \frac{1}{2}K_{22} & K_{23} & \cdots & K_{2,m-1} & \frac{1}{2}K_{2m} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ \frac{1}{2}K_{m1} & K_{m2} & K_{m3} & \cdots & K_{m,m-1} & \frac{1}{2}K_{mm} \end{bmatrix}.$$

Do all of the following:

- Write a MATLAB m-file that for a given m creates \vec{x}, \vec{y}, \vec{f}, matrix K, and matrix A.
- Inside this script make a call to your LUdecomp.m, ForwardSubs.m, and BackwardSubs.m functions in order to solve for \vec{N}.

3
• Immediately **before** your call to `LUDecomp.m`, place the following line into your script:

\[t0 = cputime; \]

• Immediately **after** your call to `BackwardSubs.m`, place the following line into your script:

\[tf = cputime - t0; \]

The variable \(tf \) tells you how much CPU time in seconds was spent solving the linear system of equations.

Using your script, answer all of the following questions:

(a) Run your code with \(m = 80 \). Plot \(\vec{N} \) vs. \(\vec{x} \).

(b) Run your code with \(m = 10, 20, 40, 80, 160, \) and \(320 \) and fill out the table:

<table>
<thead>
<tr>
<th>(m)</th>
<th>CPU Time (seconds)</th>
<th>CPU Time ratio (curr/prev)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m = 10)</td>
<td>(x)</td>
<td>XXXXXXXXXXXXXXXXXXXXXXXX</td>
</tr>
<tr>
<td>(m = 20)</td>
<td>(x)</td>
<td>XXXXXXXXXXXXXXXXXXXXXXXX</td>
</tr>
<tr>
<td>(m = 40)</td>
<td>(x)</td>
<td>XXXXXXXXXXXXXXXXXXXXXXXX</td>
</tr>
<tr>
<td>(m = 80)</td>
<td>(x)</td>
<td>XXXXXXXXXXXXXXXXXXXXXXXX</td>
</tr>
<tr>
<td>(m = 160)</td>
<td>(x)</td>
<td>XXXXXXXXXXXXXXXXXXXXXXXX</td>
</tr>
<tr>
<td>(m = 320)</td>
<td>(x)</td>
<td>XXXXXXXXXXXXXXXXXXXXXXXX</td>
</tr>
</tbody>
</table>

(c) Theoretically, what should this ratio be going to as \(m \to \infty \)? Explain your answer.

(d) Do the results in the above table agree with this prediction? Explain your answer.