MATH 174/274: Homework VII
“Splines and Numerical Integration”
Fall 2015

NOTE: For each homework assignment observe the following guidelines:

1. [Taken from Burden & Faires, 5th edition, 1993]
 A natural cubic spline S on $[0, 2]$ is defined by
 \[
 S(x) = \begin{cases}
 S_0(x) = 1 + 2x - x^3 & \text{if } 0 \leq x < 1 \\
 S_1(x) = 2 + b(x - 1) + c(x - 1)^2 + d(x - 1)^3 & \text{if } 1 \leq x \leq 2
 \end{cases}
 \]
 Find b, c, and d.

2. [Taken from Burden & Faires, 5th edition, 1993]
 A clamped cubic spline S for a function $f(x)$ on $[1, 3]$ is defined by
 \[
 S(x) = \begin{cases}
 S_0(x) = 3(x - 1) + 2(x - 1)^2 - (x - 1)^3 & \text{if } 1 \leq x < 2 \\
 S_1(x) = a + b(x - 2) + c(x - 2)^2 + d(x - 2)^3 & \text{if } 2 \leq x \leq 3
 \end{cases}
 \]
 Given that $f'(1) = f'(3)$, find a, b, c, and d.

3. Consider the following 4 equally spaced points on the interval $[x_0, x_3]$:
 \[x_j = x_0 + jh \quad [j = 0, 1, 2, 3],\]
 where $h = (x_3 - x_0)/3$.
 (a) Construct all the Lagrange polynomials $L_{3,j}(x)$ that correspond to the points x_0, x_1, x_2, and x_3.
 (b) Use these Lagrange polynomials to construct the interpolating polynomial $P_3(x)$ that interpolates the function $f(x)$ at the points x_0, x_1, x_2, and x_3.
 (c) Integrate the interpolating polynomial $P_3(x)$ to derive the following Newton-Cotes formula often referred to as Simpson’s three-eighths rule:
 \[
 \int_{x_0}^{x_3} f(x) \, dx \approx \frac{3h}{8} \left[f(x_0) + 3f(x_1) + 3f(x_2) + f(x_3) \right].
 \]

4. Consider the following integral:
 \[
 \int_{3}^{4} \frac{x}{\sqrt{x^2 - 4}} \, dx.
 \]
 Compute this integral:
 (a) Exactly by hand.
 (b) Approximately with the Trapezoidal rule and compute the error (error = |approx - exact|).
 (c) Approximately with Simpson’s rule and compute the error (error = |approx - exact|).
 (d) Approximately with Simpson’s three-eighths rule and compute the error (error = |approx - exact|).