1. Consider the following linear system,

\[A\vec{x} = \vec{b} \]

where \(A \) is the following matrix,

\[
A = \begin{pmatrix}
0 & 1 & 4 & 5 \\
2 & 0 & 2 & 4 \\
2 & 4 & 0 & 1 \\
1 & -3 & -5 & 0
\end{pmatrix}.
\]

(a) Determine the \(P, L, U \) decomposition of the matrix \(A \), such that \(PA = LU \).
(Show EACH STEP in the decomposition.)

(b) Use the \(P, L, U \) decomposition found in (a) to find the solution to \(A\vec{x} = \begin{pmatrix} 2 \\ -2 \\ 0 \\ 1 \end{pmatrix} \)
(Show ALL relevant steps).

(c) Use the \(P, L, U \) decomposition found in (a) to find the solution to \(A\vec{x} = \begin{pmatrix} 0 \\ 1 \\ 5 \\ 2 \end{pmatrix} \)
(Show ALL relevant steps).

2. **SOURCE CODE:**

Write separate MATLAB functions for LU decomposition with partial pivoting, forward substitution, and backward substitution. I recommend using the pseudocode provided in the lecture notes. These functions should be written so that they can be used to solve \(A\vec{x} = \vec{b} \) in the following way:

- LU decomposition:
 \[[L, U, P] = \text{LU} \text{decomp}(A, m) \]
• Solve \(L\vec{y} = P\vec{b} \):
 \[
y = \text{ForwardSubs}(L,P*b,m)
 \]
• Solve \(U\vec{x} = \vec{y} \):
 \[
x = \text{BackwardSubs}(U,y,m)
 \]

CAUTION: If you type something like:

```matlab
for i=1:10
  x(i) = i;
end,
```

MATLAB will create a row vector of length \(1 \times 10\). We always want a column vector, in which case you should type:

```matlab
for i=1:10
  x(i,1) = i;
end.
```

This will create a vector of length \(10 \times 1\).

3. **DISCUSSION QUESTION:**

For the linear system

\[
\begin{align*}
-x_3 + 3x_4 &= 0 \\
-x_1 + 2x_2 - x_3 &= -1 \\
3x_1 - x_2 &= 0 \\
-x_2 + 2x_3 - x_4 &= 1
\end{align*}
\]

do all of the following:

• Solve this system using the \(\text{x} = \text{A}\backslash\text{b} \) command in MATLAB.
• Use your LU decomposition with forward/backward substitution to solve this problem.
• Make sure that the answers agree.

4. **APPLICATION PROBLEM:**

In mathematical biology, integral equations of the form shown below arise when modeling the population of an invading organisms into an ecosystem (Wang, Kot, & Neubert, 2002):

\[
N(x - c) - \lambda \int_0^\infty K(x, y)N(y) \, dy = f(x).
\]

The organism being modeled by the above equation has both a growth and dispersal stage. \(N(x)\) is the population of the invading species at spatial location \(x\), \(K(x,y)\)
is the probability density function for dispersal from a source y, and $f(x)$ is related to the growth rate of the population.

We will attempt to approximately solve the above integral equation for the population $N(x)$ using numerical linear algebra. Consider an example where $c = 0$, $\lambda = 5$, and

$$K(x, y) = \frac{1}{\pi + \pi(x - y)^2}$$

$$f(x) = \frac{1}{2} - \frac{1}{\pi} \arctan(x).$$

We define the following quantities:

$m = “The number of points in our approximation”$

$D = 70$

$h = D/(m - 1)$

$x_i = -7 + (i - 1) \cdot (h/5)$

$y_j = 0 + (j - 1) \cdot h$

$f_i = 1/2 - (1/\pi) \arctan(x_i)$

$N_i \approx N(x_i) = “approximation to N(x)”$

$K_{ij} = K(x_i, y_j)$

$I = “the m \times m identity matrix”.$

We replace the integral by a Riemann sum (we will talk about this in much more detail later in the semester):

$$\int_{0}^{\infty} K(x, y)N(y) dy \approx \int_{0}^{D} K(x, y)N(y) dy \approx h \left[\frac{1}{2}K_{11}N_1 + \sum_{j=2}^{m-1} K_{ij}N_j + \frac{1}{2}K_{mm}N_m \right].$$

The original integral equation can now be re-written as a system of linear equations:

$$A\vec{N} = \vec{f},$$

where

$$\vec{N} = \begin{bmatrix} N_1 \\ N_2 \\ \vdots \\ N_m \end{bmatrix}, \quad \vec{f} = \begin{bmatrix} f_1 \\ f_2 \\ \vdots \\ f_m \end{bmatrix}, \quad A = I - h\lambda \begin{bmatrix} \frac{1}{2}K_{11} & K_{12} & K_{13} & \cdots & K_{1,m-1} & \frac{1}{2}K_{1m} \\ \frac{1}{2}K_{21} & K_{22} & K_{23} & \cdots & K_{2,m-1} & \frac{1}{2}K_{2m} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ \frac{1}{2}K_{m1} & K_{m2} & K_{m3} & \cdots & K_{m,m-1} & \frac{1}{2}K_{mm} \end{bmatrix}.$$

Do all of the following:

- Write a MATLAB m-file that for a given m creates \vec{x}, \vec{y}, \vec{f}, matrix K, and matrix A.
- Inside this script make a call to your LUdecomp.m, ForwardSubs.m, and BackwardSubs.m functions in order to solve for \vec{N}.

3
• Immediately **before** your call to `LUdecomp.m`, place the following line into your script:

\[
t0 = cputime;
\]

• Immediately **after** your call to `BackwardSubs.m`, place the following line into your script:

\[
tf = cputime - t0;
\]

The variable `tf` tells you how much CPU time in seconds was spent solving the linear system of equations.

Using your script, answer all of the following questions:

(a) Run your code with \(m = 80 \). Plot \(\vec{N} \) vs. \(\vec{x} \).

(b) Run your code with \(m = 10, 20, 40, 80, 160, \) and \(320 \) and fill out the table:

<table>
<thead>
<tr>
<th>(m)</th>
<th>CPU Time (seconds)</th>
<th>CPU Time ratio (curr/prev)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m = 10)</td>
<td></td>
<td>xxxxxxxxxxxxxxxxxxxxxxxxxx</td>
</tr>
<tr>
<td>(m = 20)</td>
<td></td>
<td>xxxxxxxxxxxxxxxxxxxxxxxxxx</td>
</tr>
<tr>
<td>(m = 40)</td>
<td></td>
<td>xxxxxxxxxxxxxxxxxxxxxxxxxx</td>
</tr>
<tr>
<td>(m = 80)</td>
<td></td>
<td>xxxxxxxxxxxxxxxxxxxxxxxxxx</td>
</tr>
<tr>
<td>(m = 160)</td>
<td></td>
<td>xxxxxxxxxxxxxxxxxxxxxxxxxx</td>
</tr>
<tr>
<td>(m = 320)</td>
<td></td>
<td>xxxxxxxxxxxxxxxxxxxxxxxxxx</td>
</tr>
</tbody>
</table>

(c) Theoretically, what should this ratio be going to as \(m \to \infty \)? Explain your answer.

(d) Do the results in the above table agree with this prediction? Explain your answer.