(1) **SOURCE CODE:**

Implement a Haar wavelet transform and its inverse. Recall that given a function of the form,

\[f_j(x) = \sum_k a_k^j \phi(2^j x - k) \in V_j \]

can be decomposed as

\[f_j(x) = f_{j-1}(x) + w_{j-1}(x), \]

where,

\[f_{j-1}(x) = \sum_k a_k^{j-1} \phi(2^{j-1} x - k) \in V_{j-1}, \]
\[w_{j-1}(x) = \sum_k b_k^{j-1} \phi(2^{j-1} x - k) \in W_{j-1}, \]

with coefficients,

\[a_k^{j-1} = \frac{1}{2} (a_{2k}^j + a_{2k+1}^j), \]
\[b_k^{j-1} = \frac{1}{2} (a_{2k}^j - a_{2k+1}^j). \]

This gives the decomposition \(V_j = V_{j-1} \oplus W_{j-1}. \) In practice, since the number of coefficients in the two representations is the same, it is natural to store this data in a vector of length \(2^j, \) where the first \(2^{j-1} \) entries contain the \(a_k^{j-1}, \) and the next \(2^{j-1} \) entries contain the \(b_k^{j-1}. \)

By repeatedly applying this at each level, we eventually represent \(V_j \) as \(V_0 \oplus W_0 \oplus W_1 \oplus \cdots \oplus W_{j-1}. \)

Given an initial vector \(v \) of length \(2^j, \) we can consider the coefficients at the \(j \)-th level to be given by,

\[a_k^j = v_k. \]

To construct the inverse Haar wavelet transform, observe that,

\[\tilde{f}_{j+1}(x) = \sum_k \tilde{a}_k^{j} \phi(2^{j+1} x - k) + \sum_k \tilde{b}_k^{j} \psi(2^{j+1} x - k) \in V_j \oplus W_j \]

can be written as,

\[\tilde{f}_{j+1}(x) = \sum_k \tilde{a}_k^{j+1} \phi(2^{j+1} x - k) \in V_{j+1}, \]
where,
\[\tilde{a}_{2k}^{j+1} = \tilde{a}_{4k}^{j} + \tilde{b}_{4k}^{j}, \]
\[\tilde{a}_{2k+1}^{j+1} = \tilde{a}_{4k+1}^{j} - \tilde{b}_{4k+1}^{j}. \]
By applying this repeatedly, we eventually recover \(V_j \) from the representation in \(V_0 \oplus W_0 \oplus W_1 \oplus \cdots \oplus W_{j-1} \).

(2) **APPLICATION PROBLEM:**

We will apply the Haar wavelet transform to the filtering of images.

Use the command,

\[>> \text{A=imread('filename.ext')} \]

to load a graphics file into the three-index array \(A \), where the first two indices are the \(x \) and \(y \) position, and the third index is the color channel.

Crop the image so that the \(x \) and \(y \) directions have lengths that are powers of 2. Apply your Haar wavelet transform to the image, first in the \(x \) direction, and then in the \(y \) direction, for each of the color channels.

Once you have performed the Haar transform, we will now attempt to discard the least significant entries. To determine the entry of the three-index array \(A \) with the largest magnitude, use the following,

\[>> \text{max(max(max(abs(A))))} \]

You can then set the entries which are below a threshold to zero using,

\[>> \text{B=A; B(abs(A)<threshold)=0} \]

You can try different thresholds that are a fraction of the maximum magnitude. Once you have done this, perform the inverse Haar transform to recover an image. The image can be written to disk by using,

\[>> \text{imwrite(A, 'filename.ext')} \]