
Journal of Dynamical and Control Systems, Vol. 15, No. 3, July 2009, 307–330 ( c©2009)

GEOMETRIC STRUCTURE-PRESERVING OPTIMAL
CONTROL OF A RIGID BODY

A. M. BLOCH, I. I. HUSSEIN, M. LEOK, and A. K. SANYAL

Abstract. In this paper, we study a discrete variational optimal
control problem for a rigid body. The cost to be minimized is the
external torque applied to move the rigid body from an initial con-
dition to a pre-specified terminal condition. Instead of discretizing
the equations of motion, we use the discrete equations obtained from
the discrete Lagrange–d’Alembert principle, a process that better ap-

proximates the equations of motion. Within the discrete-time setting,

these two approaches are not equivalent in general. The kinematics

are discretized using a natural Lie-algebraic formulation that guar-

antees that the flow remains on the Lie group SO(3) and its algebra
so(3). We use the Lagrange method for constrained problems in the
calculus of variations to derive the discrete-time necessary conditions.
We give a numerical example for a three-dimensional rigid body ma-
neuver.

1. Introduction

This paper deals with a structure-preserving computational approach to
the optimal control problem of minimizing the control effort necessary to
perform an attitude transfer from an initial state to a prescribed final state,
in the absence of a potential field. The configuration of the rigid body is
given by the rotation matrix from the body frame to the spatial frame, which
is an element of the group of orientation-preserving isometries in R

3. The
state of the rigid body is described by the rotation matrix and its angular
velocity.

To motivate the computational approach we adopt in the discrete-time
case, we first revisit the variational continuous-time optimal control prob-
lem. The continuous-time extremal solutions to this optimal control prob-
lem have certain special features, since they arise from variational principles.
General numerical integration methods, including the popular Runge–Kutta
schemes, typically preserve neither first integrals nor the characteristics of
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the configuration space. Geometric integrators are the class of numerical
integration schemes that preserve such properties, and a good survey can
be found in [3]. Techniques particular to Hamiltonian systems are also
discussed in [12, 20].

Our approach to discretizing the optimal control problem is in contrast to
traditional techniques such as collocation, wherein the continuous equations
of motion are imposed as constraints at a set of collocation points. In our
approach, modelled after [7], the discrete equations of motion are given by a
variational integrator derived from a discrete variational principle [16], and
this induces constraints on the configuration at each discrete time step.

This approach yields discrete dynamics that are more faithful to the
continuous equations of motion, and consequently yields more accurate so-
lutions to the optimal control problem that is being approximated (see [7,
Fig. 2]). The geometric structure preservation properties of variational inte-
grators in comparison to standard numerical methods, and its implications
for the long-time simulation of chaotic rigid body dynamics, are discussed
in [10], and a realistic long-time simulation of binary asteroid dynamics is
performed in [22]. These structure preservation properties are extremely
important in computing accurate (sub)optimal trajectories for long-term
spacecraft attitude maneuvers. For example, in [5], the authors propose
an imaging spacecraft formation design that requires a continuous attitude
maneuver over a period of 77 days in a low Earth orbit. Hence, the atti-
tude maneuver has to be very accurately computed to meet tight imaging
constraints over long time ranges.

While the discrete optimal control method presented here is illustrated
using the Lie group SO(3) of rotation matrices, and its corresponding Lie
algebra so(3) of skew-symmetric matrices, we have derived the method with
sufficient generality to address the problem of optimal control on arbitrary
Lie groups with the drift vector field given by geodesic flow on the group,
and it therefore widely applicable. For example, in inter-planetary orbit
transfers, one is interested in computing optimal or suboptimal trajectories
on the group of rigid body motions SE(3) with a high degree of accuracy.
Similar requirements also apply to the control of quantum systems. For
example, efficient construction of quantum gates is a problem on the unitary
Lie group SU(N). This is an optimal control problem, where one wishes to
steer the identity operator to the desired unitary operator (see, e.g., [9, 19]).

Moreover, an important feature of the way we discretize the optimal
control problem is that it is SO(3)-equivariant. The SO(3)-equivariance
of our numerical method is desirable, since it ensures that our results do
not depend on the choice of coordinates and coordinate frames. This is
in contrast to methods based on coordinatizing the rotation group using
quaternions, (modified) Rodrigues parameters, and Euler angles, as given
in the survey [23]. Even if the optimal cost function is SO(3)-invariant, as in
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[21], the use of generalized coordinates imposes constraints on the attitude
kinematics.

For the purpose of numerical simulation, the corresponding discrete op-
timal control problem is posed on the discrete state space as a two stage
discrete variational problem. In the first step, we derive the discrete dy-
namics for the rigid body in the context of discrete variational mechan-
ics [16]. This is achieved by considering the discrete Lagrange–d’Alembert
variational principle [8] in combination with essential ideas from Lie group
methods [6], which yields a Lie group variational integrator [11] that is
a symplectic-momentum integrator that explicitly preserves the Lie group
structure of the configuration space. These discrete equations are then im-
posed as constraints to be satisfied by the extremal solutions to the discrete
optimal control problem, and we obtain the discrete extremal solutions in
terms of the given terminal states.

The paper is organized as follows. As motivation, in Sec. 2, we study
the minimum control effort optimal control problem in continuous-time. In
Sec. 3, we study the corresponding discrete-time optimal control problem.
In Sec. 3.1 we state the optimal control problem and describe our approach.
In Sec. 3.2, we derive the discrete-time equations of motion for the rigid body
starting with the discrete Lagrange–d’Alembert principle. These equations
are used in Sec. 3.3 to obtain the solution to the discrete optimal control
problem. In Sec. 4, we describe an algorithm for solving the general non-
linear, implicit necessary conditions for SO(3) and give numerical examples
for rest-to-rest and slew-up spacecraft maneuvers.

2. Continuous-time results

2.1. Problem formulation. In this paper, the natural pairing between
so∗(3) and so(3) is denoted by 〈·, ·〉. Let 〈〈·, ·〉〉 and 〈〈·, ·〉〉∗ denote the stan-
dard (induced by the Killing form) inner product on so(3) and so∗(3), re-
spectively. The inner product 〈〈·, ·〉〉∗ is naturally induced from the standard
norm

〈〈ξ,ω〉〉 = −1
2
Tr(ξT ω) ∀ξ,ω ∈ so(3),

through

〈〈η,ϕ〉〉∗ =
〈
η,ϕ�

〉
= 〈η,ω〉 =

〈
ξ�,ω

〉
= 〈〈ξ,ω〉〉 , (1)

where ϕ = ω� ∈ so∗(3) and η = ξ� ∈ so∗(3), with ξ,ω ∈ so(3) and � and
� are the musical isomorphisms with respect to the standard metric 〈〈·, ·〉〉.
On so(3), these isomorphisms correspond to the transpose operation. That
is, we have ϕ = ωT and η = ξT.

Let J : so(3) → so∗(3) be the positive definite inertia operator. It can be
shown that

〈J(ξ),ω〉 = 〈J(ω), ξ〉 . (2)
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On so(3), J is given by J(ξ) = Jξ + ξJ , where J is a positive definite
symmetric matrix (see, e.g., [17]). Moreover, we also have

J(η�)� = (JηT + ηTJ)T = J(η),

which is an abuse of notation since η ∈ so∗(3). For the sake of generality
and mathematical precision we will use the general definitions, though it
helps to keep the above identifications for so(3) in mind.

In this section, we review some continuous-time optimal control results
using a simple optimal control example on SO(3). The problem we consider
is that of minimizing the norm squared of the control torque τ ∈ so∗(3)
applied to rotate a rigid body subject to the Lagrange–d’Alembert principle
for the rigid body1 whose configuration is given by R ∈ SO(3) and body
angular velocity is given by Ω ∈ so(3). We require that the system evolve
from an initial state (R0,Ω0) to a final state (RT ,ΩT ) at a fixed terminal
time T .

Before proceeding with a statement of the optimal control problem, we
first define variations of the rigid body configuration R and its velocity
Ω. Given a curve R(t) on SO(3), variations of the curve are given by
Rε(t) := R(t, ε) that satisfies R(t, 0) = R(t). Let W(t) ∈ so(3) be the
variation vector field [1] given by

W(t) = (R(t))−1
δR(t),

where

δR(t) =
∂Rε(t)

∂ε

∣
∣
ε=0

∈ TR(t)SO(3).

Since we will be concerned with variations that keep the endpoints fixed, we
have the property that W(0) = 0, W(T ) = 0. The variation in the velocity
vector field is denoted by δΩ.

We now state the minimum control effort optimal control problem.

Problem 2.1. Minimize

J =
1
2

T∫

0

〈〈τ , τ 〉〉∗ dt (3)

subject to
1. satisfying the Lagrange–d’Alembert principle:

δ

T∫

0

1
2
〈J (Ω) ,Ω〉 dt +

T∫

0

〈τ ,W〉dt = 0, (4)

1This is equivalent to constraining the problem to satisfy the rigid body equations of
motion given by Eqs. (7). However, for the sake of generality that will be appreciated in
the discrete-time problem, we choose to treat the Lagrange–d’Alembert principle as the
constraint as opposed to the rigid body equations of motion. Both are equivalent in the
continuous-time case but are generally not equivalent in the discrete-time case.
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for a variation vector field W(t), and subject to Ṙ = RΩ,
2. and the boundary conditions

R(0) = R0, Ω(0) = Ω0,

R(T ) = RT , Ω(T ) = ΩT .
(5)

Now we show that the constraint of satisfying the Lagrange–d’Alembert
principle leads to the following problem formulation, where the rigid body
equations of motion replace the Lagrange–d’Alembert principle.

Problem 2.2. Minimize

J =
1
2

T∫

0

〈〈τ , τ 〉〉∗ dt (6)

subject to
1. the kinematics and dynamics

Ṙ = RΩ, Ṁ = ad∗
ΩM + τ = [M,Ω] + τ , (7)

where M = J(Ω) ∈ so∗(3) is the momentum,
2. and the boundary conditions

R(0) = R0, Ω(0) = Ω0,

R(T ) = RT , Ω(T ) = ΩT .
(8)

In the above, ad∗ is the dual of the adjoint representation, ad, of so(3)
and is given by ad∗

ξη = −[ξ,η] ∈ so∗(3), for all ξ ∈ so(3) and η ∈ so∗(3).
Recall that the bracket is defined by [ξ,ω] = ξω − ωξ.

2.2. The Lagrange–d’Alembert principle and the equations of mo-
tion of a rigid body. In this section, we derive the forced rigid body
equations of motion (Eqs. (7)) from the Lagrange–d’Alembert principle,
using a direct derivation based on [17, Sec. 13.5].

First, we take variations of the kinematic condition Ω = R−1Ṙ to obtain

δΩ = −R−1 (δR)R−1Ṙ + R−1
(
δṘ

)
.

As defined previously, we have

W = R−1δR

and, therefore,

Ẇ = −R−1ṘR−1δR + R−1δṘ = −ΩW + R−1δṘ,

since
δṘ =

d
dt

δR.

Hence, we have

δΩ = −WΩ + ΩW + Ẇ = adΩW + Ẇ. (9)
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Taking variations of the Lagrange–d’Alembert principle we obtain
T∫

0

〈J (Ω) , δΩ〉 + 〈τ ,W〉 dt = 0.

Using the variation in Eq. (9) and integrating by parts, we obtain

0 =

T∫

0

〈
−Ṁ + ad∗

ΩM + τ ,W
〉

dt + [〈J (Ω) ,W(t)〉]T0 ,

where M = J (Ω) and we used the identity

〈η, adωξ〉 = 〈ad∗
ωη, ξ〉 , η ∈ so∗(3), ω, ξ ∈ so(3). (10)

This completes the proof that problem (2.1) is equivalent to problem (2.2).
In Sec. 2.3, we demonstrate how the necessary conditions for prob-

lem (2.2) are derived using a variational approach.

2.3. Continuous-time variational optimal control problem. A direct
variational approach is used here to obtain the differential equation that
satisfies the optimal control problem (2.2).

A second-order direct approach. “Second order” is used here to
reflect the fact that we now study variations of second order dynamical
equations as opposed to the kinematic direct approach studied in Sec. 2.2.
We now give the resulting necessary conditions using a direct approach as
in [17]. We already calculate the variations of R and Ω. These were as
follows: δR = RW and δΩ = adΩW+Ẇ. We now calculate the variation
of Ṁ with the goal of obtaining the proper variations for τ :

δṀ = J
(
δΩ̇

)
= J

(
d
dt

δΩ + R (W,Ω)Ω
)

,

where R is the curvature tensor on SO(3)(3). The curvature tensor R arises
due to the identity (see [18, p. 52])

∂

∂ε

∂

∂t
Y − ∂

∂t

∂

∂ε
Y = R(W,Y)Ω,

where Y ∈ TSO(3) is any vector field along the curve R(t) ∈ SO(3). Taking
variations of Ṁ = ad∗

ΩM + τ , we obtain

δṀ = ad∗
δΩM + ad∗

ΩδM + δτ .

We now have the desired variation in τ :

δτ = J (R (W,Ω)Ω) +
d
dt

J (δΩ) − ad∗
δΩM − ad∗

ΩδM. (11)

Taking variations of the cost functional (6) we obtain:
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δJ =

T∫

0

(〈
J(ς̈) − ad∗

Ω (J(ς̇)) + η̇ − d
dt

(
ad∗

ςM
)

+
[R (

J(ς)�,Ω
)
Ω
]�

+ ad∗
Ωad∗

ςM − ad∗
Ωη,W

〉)
dt,

where ς = τ � ∈ so(3) and η = J (adΩς) ∈ so∗(3). In obtaining the above
expression, we have used integration by parts and the boundary conditions
(8), Eqs. (9) and (11), and identities (1), (2), and (10). Hence, we have the
following theorem.

Theorem 2.1. The necessary optimality conditions for the problem of
minimizing (6) subject to the dynamics (7) and the boundary conditions (8)
are given by the single fourth-order2 differential equation

0 = J(ς̈) − ad∗
Ω (J(ς̇)) + η̇ − d

dt

(
ad∗

ςM
)

+
[
R
(
(J(ς))�

,Ω
)
Ω
]�

+ ad∗
Ω

(
ad∗

ςM
)− ad∗

Ωη,

as well as Eqs. (7) and the boundary conditions (8), where ς and η are as
defined above.

Note that for a compact semi-simple Lie group G with Lie algebra g, the
curvature tensor, with respect to a bi-invariant metric, is given by (see [18]):

R (X,Y)Z =
1
4
adadXYZ, (12)

for all X,Y,Z ∈ g.

Remark 2.1. Note that the equations of motion that arise from the
Lagrange–d’Alembert principle are used to define the dynamic constraints.
So, in effect, we are minimizing J subject to satisfying the Lagrange–
d’Alembert principle for the rigid body. Analogously, the discrete version
of the Lagrange–d’Alembert principle will be used to derive the discrete
equations of motion in the discrete optimal control problem to be studied
in Sec. 3.3. This view is in line with the approach in [7] in that we do not
discretize the equations of motion directly, but, instead, we discretize the
Lagrange–d’Alembert principle. These two approaches are not equivalent
in general.

3. Discrete-time results

3.1. Problem formulation. In this section, we give the discrete version
of the problem introduced in Sec. 2.1. So, we consider minimizing the
norm squared of the control torque τ subject to satisfaction of the discrete

2Second order in τ and fourth order in R.
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Lagrange–d’Alembert principle for the rigid body whose configuration and
body angular velocity at time step tk are given by Rk ∈ SO(3) and Ωk ∈
so(3), respectively. The kinematic constraint may be expressed as

Rk+1 = Rk exp (hΩk) = Rkgk, (13)

where h is the integration time step, exp : so(3) → SO(3) is the exponential
map, and gk = exp(hΩk). The boundary conditions are given by (R∗

0,Ω
∗
0)

and (R∗
N ,Ω∗

N−1), where t0 = 0 and N = T/h is such that tN = T .
More generally, one considers the ansatz Rk+1 = Rk exp (Ω(h)), where

Ω(·) is an interpolatory curve in so(3) parameterized by the angular velocity
at internal nodal points. This allows one to construct Lie group variational
integrators of arbitrarily high order [13]. To simplify the subsequent treat-
ment, we adopt (13) as the kinematic constraint, which yields a first-order
accurate Lie symplectic Euler method, which will nevertheless have effective
order two as it is symplectically conjugate to the second-order accurate Lie
Störmer–Verlet method (see Sec. 3.4).

The reason we constrain Ω at t = h(N − 1) instead of at t = hN
will become clear when we derive the discrete equations of motion in
Sec. 3.2. A simple explanation for this is that a constraint on Ωk ∈ so(3)
corresponds, by left translations to a constraint on Ṙk ∈ TRk

SO(3).
In turn, in the discrete setting and depending on the choice of dis-
cretization, this corresponds to a constraint on the neighboring discrete
points . . . ,Rk−2,Rk−1,Rk+1,Rk+2, . . .. With our choice of discretization
(Eq. (13)), this corresponds to constraints on Rk and Rk+1. Hence, to en-
sure that the effect of the terminal constraint on Ω is correctly accounted for,
the constraint must be imposed on ΩN−1, which entails some constraints
on variations at both RN−1 and RN . We will return to this point later in
the paper.

The discrete kinematic constraint ensures that the sequence Rk stays on
the rotation group, since the exponential of the angular velocity matrix Ωk,
which is in the algebra so(3), is a rotation matrix, and the rotation group is
closed under matrix multiplication. This is natural to do in the context of
discrete variational numerical solvers (for both initial value and two point
boundary value problems).

Following the methodology of [7], we have the following optimal control
problem.

Problem 3.1. Minimize

J =
N∑

k=0

1
2
〈〈τ k, τ k〉〉∗ (14)

subject to
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1. satisfying the discrete Lagrange–d’Alembert principle:

δ

N−1∑

k=0

1
2
〈J (Ωk) ,Ωk〉 +

N∑

k=0

〈τ k,Wk〉 = 0, (15)

subject to R0 = R∗
0, RN = R∗

N and Rk+1 = Rkgk, k = 0, 1, . . . , N−1,
where Wk is the variation vector field at time step tk satisfying δRk =
RkWk,

2. and the boundary conditions

R0 = R∗
0, Ω0 = Ω∗

0,

RN = R∗
N , ΩN−1 = Ω∗

N−1.
(16)

In problem (3.1), the discrete Lagrange–d’Alembert principle is used to
derive the equations of motion for the rigid body with initial and terminal
configuration constraints. Hence, we get a two point boundary value prob-
lem. The full configuration and velocity boundary conditions come into the
picture when we study the optimal control problem. We will show that the
constraint of satisfying the Lagrange–d’Alembert principle in problem (3.1)
leads to the following problem formulation, where the discrete rigid body
equations of motion replace the Lagrange–d’Alembert principle constraint.
Only when addressing the following optimal control problem will we need
to include the velocity boundary conditions in the derivation.

Problem 3.2. Minimize

J =
N∑

k=0

1
2
〈〈τ k, τ k〉〉∗ (17)

subject to
1. the discrete kinematics and dynamics

Rk+1 = Rkgk, k = 0, . . . , N − 1,

Mk = Ad∗
gk

(hτ k + Mk−1) , k = 1, . . . , N − 1,

Mk = J (Ωk) , k = 0, . . . , N − 1,

(18)

2. and the boundary conditions

R0 = R∗
0, Ω0 = Ω∗

0,

RN = R∗
N , ΩN−1 = Ω∗

N−1.
(19)

Regarding terminal velocity conditions, note that in the second of equa-
tions (18) if we let k = N we find that ΩN appears in the equation. A
constraint on ΩN dictates constraints at the points RN and RN+1 through
the first equation in (18). Since we only consider time points up to t = Nh,
we cannot allow k = N in the second of equations (18) and hence our
terminal velocity constraints are posed in terms of ΩN−1 instead of ΩN .
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As mentioned above, Wk is a variation vector field associated with the
perturbed group element Rε

k. Likewise, we need to define a variation vector
field associated with the element gk = exp(hΩk). First, let the perturbed
variable gε

k be defined by

gε
k = gk exp(εhδΩk), (20)

where

δΩk =
∂Ωε

k

∂ε

∣
∣∣∣
ε=0

.

Note that gε
k

∣∣
ε=0

= gk as desired. Moreover, we have

δgk = gk(hδΩk) exp(εhδΩk)
∣∣
ε=0

= hgkδΩk. (21)

This will be needed later when taking variations.

3.2. The discrete Lagrange–d’Alembert principle and the equa-
tions of motion of a rigid body. In this section, we derive the discrete
forced rigid body equations of motion (18) from the discrete Lagrange–
d’Alembert principle.

We begin by computing the constrained variation associated with the
kinematic constraint (13). Taking variations of the kinematic constraint,
we obtain

−R−1
k (δRk)R−1

k Rk+1 + R−1
k δRk+1 = hgk · δΩk,

which is equivalent to

−Wkgk + gkWk+1 = hgkδΩk,

or

δΩk =
1
h

[
−Adg−1

k
Wk + Wk+1

]
. (22)

Note that this is an expression over the Lie algebra so(3).
After simple algebraic and re-indexing operations, the Lagrange–

d’Alembert principle gives

0 =
〈

τ 0 − 1
h

Ad∗
g−1
0

J (Ω0) ,W0

〉
+
〈

τN +
1
h
J (ΩN−1) ,WN

〉

+
N−1∑

k=1

〈
τ k − 1

h
Ad∗

g−1
k

J (Ωk) +
1
h
J (Ωk−1) ,Wk

〉
.

where we have used Eq. (22). By the boundary conditions R0 = R∗
0 and

RN = R∗
N , we have W0 = 0 and WN = 0. Since δΩk, k = 0, . . . , N−1, and

Wk, k = 1, . . . , N − 1, are arbitrary and independent, then the Lagrange–
d’Alembert principle requires that Eqs. (18) hold. The variables Mk, k =
0, . . . , N − 1, are of course nothing but the discrete angular momentum of
the rigid body.
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Equations (18) can be viewed in two ways. The first is to consider the
two point boundary value problem where we retain the terminal condition
on RN . In this case a (constrained) variety of a combination of control
torques τ k, k = 0, . . . , N , and initial velocity conditions Ω0 can be chosen
to drive the rigid body from the initial condition R0 to the terminal con-
dition RN . The second view is to treat it as an initial value problem by
ignoring any terminal configuration constraints. In this case WN �= 0 and
any combination of control torques τ k, k = 0, . . . , N , and initial velocity
conditions Ω0 can be chosen freely.

Simulation results. To test our results, we re-write the discrete equations
(18) for the subgroup SO(2). For SO(2) we have

Rk =
[

cos θk − sin θk

sin θk cos θk

]
, Ωk =

[
0 −ωk

ωk 0

]
(23)

and

exp (Ωk) =
[

cos ωk − sin ωk

sin ωk cos ωk

]
. (24)

The inertia operation is simply given by

J (Ωk) =
[

0 −Iωk

Iωk 0

]
, (25)

where I is the mass moment of inertia of the body about the out-of-plane
axis. One can verify that Adexp(ω)ξ = ξ and that Ad∗

exp(ω)η = η, for all
ξ,ω ∈ so(2) and η ∈ so∗(2).

Then Eqs. (18) (treated as an initial-value problem) are given for SO(2)
by

θk+1 = θk + hωk, k = 0, . . . , N − 1,

ωk =
h

I
τk + ωk−1, k = 1, . . . , N − 1,

(26)

in addition to the initial conditions θ0 = θ∗0 , ω0 = ω∗
0 .

To verify the accuracy of our numerical computation, we give the corre-
sponding continuous-time equations of motion for the planar rigid body on
SO(2) using Eqs. (7). The Lie bracket on SO(2) is identically equal to zero.
Hence, one can check that Eqs. (7) are given by θ̇ = ω and ω̇ = τ/I, where
θ, ω, and τ are the continuous time angular position, velocity, and torque,
respectively. We integrate the equations using the torque τ(t) = sin (πt/2),
t ∈ [0, T ]. We use the following parameters for our simulations: T = 10,
I = 1, θ(0) = 3, ω(0) = 4, and we try three different time steps correspond-
ing to N = 1000, 1500, and 2000. The error between the continuous- and
discrete-time values of θ and ω are given in Fig. 1. Note that the accuracy
of the simulation improves with increasing N .
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Fig. 1. Error dynamics on SO(2).

Remark 3.1. Note that the discrete-time equations (26) correspond to
the Euler approximation for the equations of motion. This is a check that
our method returns something familiar for a simple example as the planar
rigid body. However, we emphasize that on SO(3) the discretization will not
necessarily be equivalent to any of the classical discretization schemes. The
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discretization will generally result in a set of nonlinear implicit algebraic
equations.

3.3. Discrete-time variational optimal control problem. We now ad-
dress problem (3.2) by computing the constrained variation δτ k arising from
the discrete equations of motion. Using Eq. (22) and taking the variation
of the second equation in (18), we obtain

δτ k = Ad∗
g−1

k

(
1
h2

J
(
Wk+1 − Adg−1

k
Wk

)

+
1
h

[
Wk+1 − Adg−1

k
Wk,J (Ωk)

])

− 1
h2

J
(
Wk − Adg−1

k−1
Wk−1

)
, (27)

for k = 1, . . . , N − 1. Taking variations of the cost functional (17) and
substituting from Eq. (27) one obtains after a tedious but straight forward
computation an expression for δJ in terms of δτ k:

δJ =
N−1∑

k=1

[
〈
Ad∗

g−1
k

(
1
h2

J
(
Wk+1 − Adg−1

k
Wk

)

+
1
h

[
Wk+1 − Adg−1

k
Wk,J (Ωk)

])
− 1

h2
J
(
Wk − Adg−1

k−1
Wk−1

)
, τ �

k

〉
]

+
〈
δτ 0, τ

�
0

〉
+
〈
δτN , τ �

N

〉
.

When δJ is equated to zero (and after some algebraic rearrangement), one
can obtain the boundary conditions on τ 0, τ 1, τN−1, τN from the resulting
equations below:

τ 0 = 0,

0 = − 1
h2

(
J
(
τ �

1

)
+ Ad∗

g−1
1

J
(
Adg−1

1
τ �

1

))

− 1
h

Ad∗
g−1
1

[
J (Ω1) ,Adg−1

1

(
τ �

1

)]
,

0 = − 1
h2

(
J
(
τ �

N−1

)
+ Ad∗

g−1
N−1

J
(
Adg−1

N−1
τ �

N−1

))

− 1
h

Ad∗
g−1

N−1

[
J (ΩN−1) ,Adg−1

N−1

(
τ �

N−1

)]
,

τN = 0

as well as discrete evolution equations that are written in algebraic nonlinear
form as follows:

0 = − 1
h2

(
J
(
τ �

k

)
− Ad∗

g−1
k

J
(
τ �

k+1

)
− J

(
Adg−1

k−1
τ �

k−1

)
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+ Ad∗
g−1

k
J
(
Adg−1

k
τ �

k

))
− 1

h

(
Ad∗

g−1
k

[
J (Ωk) ,Adg−1

k

(
τ �

k

)]

− 1
h

[
J (Ωk−1) ,Adg−1

k−1

(
τ �

k−1

)])
, (28)

for k = 2, . . . , N − 2.
This result is summarized in the following theorem.

Theorem 3.1. The necessary optimality conditions for the discrete
problem (3.2) are

Rk+1 = Rkgk, k = 1, . . . , N − 2,

Mk = Ad∗
gk

(hτ k + Mk−1) , k = 1, . . . , N − 1,

0 = − 1
h2

(
J
(
τ �

k

)
− Ad∗

g−1
k

J
(
τ �

k+1

)

− J
(
Adg−1

k−1
τ �

k−1

)
+ Ad∗

g−1
k

J
(
Adg−1

k
τ �

k

))

− 1
h

(
Ad∗

g−1
k

[
J (Ωk) ,Adg−1

k

(
τ �

k

)]

− 1
h

[
J (Ωk−1) ,Adg−1

k−1

(
τ �

k−1

)])
, k = 2, . . . , N − 2,

Mk = J (Ωk) , k = 0, . . . , N − 1,

and the boundary conditions

R0 = R∗
0, R1 = R∗

0g
∗
0, Ω0 = Ω∗

0,

RN = R∗
N , RN−1 = R∗

N

(
g∗

N−1

)−1
, ΩN−1 = Ω∗

N−1,

τ 0 = 0, τN = 0,

where g∗
0 = exp(hΩ∗

0) and g∗
N−1 = exp

(
hΩ∗

N−1

)
.

The following discussion shows that while our discrete approximation
(13) is formally first-order accurate, it is symplectically equivalent to the
second-order accurate Störmer–Verlet method, and hence has effective order
two.

3.4. Lie symplectic Euler and symplectic Equivalence. Note that
the discrete Lagrangian adopted in our paper is obtained by approximating
the velocity as a constant over the time step h, and by approximating the
integral in time by

t2∫

t1

f(t)dt ≈ (t2 − t1)f(t1).
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In the Lie group setting, the constant angular velocity approximation cor-
responds to the condition,

Rk+1 = Rk exp(hΩk)

or, equivalently,

Ωk =
1
h

exp−1(R−1
k Rk+1).

If we set G = R
n and we introduce the notation (q,v) ∈ TR

n, we obtain

vk =
qk+1 − qk

h
,

which is a usual finite-difference approximation for the velocity. Consider
then a Lagrangian of the form

L(q,v) =
1
2
vT Mv − V (q).

Approximating the action integral from 0 to h using a constant velocity
approximation and a quadrature formula, we have

h∫

0

L(q(t),v(t))dt ≈
h∫

0

L
(
q(t),

qk+1 − qk

h

)
dt ≈ hL

(
qk,

qk+1 − qk

h

)
.

We then consider choose the discrete Lagrangian

Ld(qk,qk+1) = hL
(
qk,

qk+1 − qk

h

)

= h

[
1
2

(qk+1 − qk

h

)T

M
(qk+1 − qk

h

)
− V (qk)

]
.

The discrete Euler–Lagrange equations

D2Ld(qk−1,qk) + D1Ld(qk,qk+1) = 0

yield

M
(qk − qk−1

h

)
− M

(qk+1 − qk

h

)
− h

∂V

∂q
(qk) = 0,

which induces an implicit update map (qk−1,qk) 	→ (qk,qk+1). To obtain
the corresponding Hamiltonian update map, we push-forward this algorithm
to T ∗Q by using the discrete fiber derivative FLd : Q × Q → T ∗Q, which
takes (qk,qk+1) 	→ (qk+1,D2Ld(qk,qk+1)). In particular, we have

pk+1 = D2Ld(qk,qk+1) = M
(qk+1 − qk

h

)
,

which implies
qk+1 = qk + hM−1pk+1. (29)

This allows us to rewrite the discrete Euler–Lagrange equations as follows:

pk − pk+1 − h
∂V

∂q
(qk) = 0
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or, equivalently,

pk+1 = pk − h
∂V

∂q
(qk). (30)

Now (29) and (30) are precisely the symplectic Euler method applied to the
corresponding Hamiltonian vector field, as we shall see.

The corresponding Hamiltonian is given by

H(q,p) =
1
2
pT M−1p + V (q).

The Hamilton equations yield

(
q̇
ṗ

)
=

⎛

⎜⎜
⎝

∂H

∂p

−∂H

∂q

⎞

⎟⎟
⎠ =

⎛

⎜
⎝

M−1p

−∂V

∂q

⎞

⎟
⎠ .

The symplectic Euler method has the form

qk+1 = qk + hq̇(qk,pk+1),

pk+1 = pk + hṗ(qk,pk+1),

which yields

qk+1 = qk + hM−1pk+1,

pk+1 = pk + h

(
−∂V

∂q
(qk)

)
,

which is precisely what we obtained in (29) and (30). This demonstrates
that our method is the generalization of the symplectic Euler method to
Lie groups, which has important numerical consequences. While symplectic
Euler is formally first-order accurate, it is symplectically equivalent [24,
14] to the second-order accurate Störmer–Verlet method [4]. This means
that one can obtain the Störmer–Verlet method FSV by conjugating the
symplectic Euler method FE with a symplectic transformation T ,

FSV = TFET−1.

In particular, numerical trajectories of symplectic Euler will shadow numer-
ical trajectories obtained using Störmer–Verlet. Consider the implications
of this symplectic equivalence for our discrete optimal control problem. Let
the boundary conditions be specified by q0,qN , and assume that we use
Störmer–Verlet to propagate the solution, then the boundary condition is
expressed as

qN = FN
SVq0 = (TFET−1)Nq0 = TFN

E T−1q0,

which is equivalent to

q̃N = T−1qN = FN
E T−1q0 = FN

E q̃0.
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This implies that if we preprocess the boundary conditions q0 and qN to
obtain q̃0 = T−1q0 and q̃N = T−1qN , we can use symplectic Euler at the
internal stages to propagate the states and costates, and then postprocess
them to obtain the trajectory one would have obtained by using Störmer–
Verlet.

In practice, the shadowing result imparts the symplectic Euler method
with the same desirable qualitative properties as Störmer–Verlet, and it
is not necessary to postprocess the numerical solutions in order to achieve
accurate results. Since on an appropriate choice of charts, our Lie symplectic
Euler method reduces to symplectic Euler in coordinates, it follows that
there is a corresponding second-order Lie Störmer–Verlet method that our
method is symplectically equivalent to, and in particular, our method has
effective order two.

4. Numerical approach and results

The first-order optimality equations, Eq. (28), in combination with the
boundary conditions,

R0 = R∗
0, RN = R∗

N , Ω0 = Ω∗
0, ΩN−1 = Ω∗

N−1,

leave the torques τ 1, . . . , τN−1, and the angular velocities Ω1, . . . ,ΩN−2 as
unknowns. By substituting the relations gk = exp(hΩk), Mk = J(Ωk), we
can rewrite the necessary conditions (28) as follows:

0 = − 1
h2

(
J(τ �

k) − Ad∗
exp(−hΩk)J(τ �

k+1) − J(Adexp(−hΩk−1)τ
�
k−1)

+ Ad∗
exp(−hΩk)J(Adexp(−hΩk)τ

�
k)
)

− 1
h

(
Ad∗

exp(−hΩk)

[
J(Ωk),Adexp(−hΩk)(τ

�
k)
]

− 1
h

[
J(Ωk−1),Adexp(−hΩk−1)(τ

�
k−1)

])
,

where k = 2, . . . , N−2, and the discrete evolution equations, given by line 2
of (18), can be written as follows:

0 = J(Ωk) − Ad∗
exp(hΩk)(hτ k + J(Ωk−1)),

where k = 1, . . . , N −1. In addition, we use the boundary conditions on R0

and RN , together with the update step given by line 1 of (18) to give the
last constraint,

0 = log
(
R−1

N R0 exp(hΩ0) . . . exp(hΩN−1)
)
,

where log is the logarithm map on SO(3).
Note that while we use the direct variational approach to obtain the dis-

crete extremal solutions, an alternate way to obtain the discrete extremal
solutions would be to use Pontryagin’s maximum principle. In particular,
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Bonnans and Laurent–Varin [2] show that these two approaches are equiv-
alent in the context of symplectic partitioned Runge–Kutta schemes.

At this point, it should be noted that one important advantage of the
manner in which we have discretized the optimal control problem is that it
is SO(3)-equivariant. This is to say that if we rotated all the boundary con-
ditions by a fixed rotation matrix, and solved the resulting discrete optimal
control problem, the solution we would obtain would simply be the rotation
of the solution of the original problem. This can be seen quite clearly from
the fact that the discrete problem is expressed in terms of body coordinates,
both in terms of body angular velocities and body forces. In addition, the
initial and final attitudes R0 and RN only enter in the last equation as a
relative rotation.

The SO(3)-equivariance of our numerical method is desirable, since it
ensures that our results do not depend on the choice of coordinate frames.
This is in contrast to methods based on coordinatizing the rotation group
using quaternions and Euler angles.

Each of the equations above take values in so(3). Consider the Lie algebra
isomorphism between R

3 and so(3) given by the hat map

v = (v1, v2, v3) 	→ v̂ =

⎡

⎣
0 −v3 v2

v3 0 −v1

−v2 v1 0

⎤

⎦ ,

which maps 3-vectors to 3 × 3 skew-symmetric matrices. In particular, we
have the following identities:

[û, v̂] = (u × v)̂ , AdAv̂ = (Av)̂ .

Furthermore, we identify so(3)∗ with R
3 by the usual dot product, that is

to say if Π, v ∈ R
3, then 〈Π, v̂〉 = Π · v. With this identification, we have

that
Ad∗

A−1Π = AΠ.

Using the identities above, we write the necessary conditions using matrix-
vector products and cross products. Then, each of the equations can be
interpreted as 3-vector valued functions, and the system of equations can
be considered as a 3(2N − 3)-vector valued function, which is precisely the
dimensionality of the unknowns. This reduces the discrete optimal problem
to a nonlinear root finding problem.

The nonlinear system of equations was solved in MATLAB using the
fsolve routine, where the Jacobian is constructed column by column, and
the kth column is computed using the following approximation (see [15]):

∂F
∂xk

(x) =
1
ε

Im[F(x + iεek)],

where i =
√−1, ek is a basis vector in the direction xk, and ε is of the

order of machine epsilon. This method is preferable to a finite-difference
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Fig. 2. Discrete optimal rest-to-rest maneuver in SO(3).
Angular velocity and control torques

Fig. 3. Discrete optimal rest-to-rest maneuver in SO(3).
Principal axis and angle

approximation, since it does not suffer from round-off errors, which would
otherwise limit how small ε can be.
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Fig. 4. Discrete optimal rest-to-rest maneuver in SO(3).
Instantaneous rotation axis

In our numerical simulation, we computed an optimal trajectory for a
rest-to-rest maneuver, as illustrated in Figs. 2–4. Here, the maneuver time
is 12.8 sec, N = 128, and the moment of inertia is given by

J =

⎡

⎣
13.25 −7.80 −11.40
−7.80 16.25 4.71

−11.40 4.71 18.37

⎤

⎦ .

The prescribed maneuver corresponds to a rotation by π
3 about the x-axis.

Since the moment of inertia tensor is not a multiple of the identity, and
the x-axis does not correspond to the axis of minimal inertia, the optimal
trajectory does not just involve a pure rotation about the x-axis. It is worth
noting that the results are not rotationally symmetric about the midpoint
of the simulation interval, which is due to the fact that our choice of up-
date, Rk+1 = Rk exp(hΩk), does not exhibit time-reversal symmetry. In a
forthcoming publication, we will introduce a reversible algorithm to address
this issue. In particular, this will involve explicitly computing the station-
arity conditions for the discrete optimal control problem constrained by the
time-symmetric Lie Störmer–Verlet method.

We also present results for an optimal slew-up maneuver, illustrated in
Figs. 5–7. This uses the same moment of inertia tensor as in the previous
simulation, and the desired maneuver involves a rotation of π

6 about the

x-axis from rest to a final angular velocity of ΩN−1 =
[
0.3 0.2 0.3

]T,
over a maneuver time of 12.8 sec, and N = 128.
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Fig. 5. Discrete optimal slew-up maneuver in SO(3). An-
gular velocity and control torques

Fig. 6. Discrete optimal slew-up maneuver in SO(3). Prin-
cipal axis and angle
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Fig. 7. Discrete optimal slew-up maneuver in SO(3). In-
stantaneous rotation axis

5. Conclusion

In this paper, we studied the continuous- and discrete-time optimal con-
trol problem for the rigid body, where the cost to be minimized is the exter-
nal torque applied to move the rigid body from an initial condition to some
pre-specified terminal condition. In the discrete setting, we use the discrete
Lagrange–d’Alembert principle to obtain the discrete equations of motion.
The kinematics were discretized to guarantee that the flow in phase space
remains on the Lie group SO(3) and its algebra so(3). We described how
the necessary conditions can be solved for the general three-dimensional case
and gave a numerical example for a three-dimensional rigid body maneuver.

The synthesis of variational mechanics with discrete-time optimal control
is particularly advantageous from the point of view of computational effi-
ciency, since the symplectic Euler method is symplectically conjugate to the
Störmer–Verlet method, and hence has effective order two. Consequently,
for our discrete-time optimal control method, the cost functional converges
at a rate which is characteristic of a second-order method, while being based
on a first-order method that is computationally cheaper.

Currently, we are investigating the use of the Pontryagin’s maximum
principle with Lie group methods in continuous- and discrete-time to obtain
the necessary conditions. Additionally, we wish to generalize the result to
general Lie groups that have applications other than the rigid body motion
on SO(3). In particular, we are interested in controlling the motion of a
rigid body in space, which corresponds to motion on the noncompact Lie
group SE(3).
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