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Abstract— This paper introduces a global uncertainty prop-
agation scheme for the attitude dynamics of a rigid body,
through a combination of numerical parametric uncertainty
techniques, noncommutative harmonic analysis, and geometric
numerical integration. This method is distinguished from prior
approaches, as it allows one to consider probability densities
that are global, and are not supported on only a single
coordinate chart on the manifold. It propagates a global
probability density through the full attitude dynamics, instead
of replacing angular velocity dynamics with a gyro bias model.
The use of Lie group variational integrators, that are symplectic
and remain on the Lie group, as the underlying numerical
propagator ensures that the advected probability densities
respect the geometric properties of uncertainty propagation
in Hamiltonian systems, which arise as consequence of the
Gromov nonsqueezing theorem from symplectic geometry. We
also describe how the global uncertainty propagation scheme
can be applied to the problem of global attitude estimation.

I. INTRODUCTION

The attitude dynamics of a rigid body is a Hamiltonian
flow on the special orthogonal group SO(3), but most current
attitude uncertainty propagation schemes [1] do not properly
take these characteristics into account. Typically, the attitude
is represented by unit quaternions, which is problematic
for global uncertainty propagation due to the ambiguity
introduced by the double cover of SO(3) by the three-sphere
S3 of unit quaternions. Since a covariance matrix for the
quaternion vector is singular, reduced representations of the
covariance matrix have been developed [2]. Furthermore,
the dynamics are often simplified to kinematic equations
by replacing the dynamics of the angular velocity with a
gyro bias model, thereby ignoring uncertainties in the angular
velocity [3]. As such, most existing techniques are only valid
over time periods when the uncertainties are small.

This paper develops a global uncertainty propagation
method for a rigid body by explicitly considering the charac-
teristics of the Hamiltonian flow and the special orthogonal
group, without implicitly assuming that the uncertainty is
localized, nor that the uncertainty distribution is fully sup-
ported in a single coordinate chart on the manifold. We
also explicitly consider uncertainties in the angular velocity
dynamics, and we propagate a probability density on the
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tangent bundle of SO(3). This paper focuses on developing
a computational approach for global uncertainty propagation
that can be applied to aggressive attitude dynamics with
large uncertainty. This is achieved through a synthesis of
noncommutative harmonic analysis [4], numerical paramet-
ric uncertainty analysis techniques [5], [6], and geometric
numerical integration [7].

Although it is not widely known in the engineering com-
munity, the theories of probability and stochastic processes
on manifolds have been developed by theoretical statisti-
cians [8], [9], [10]. Earlier works on attitude estimation on
SO(3) include [11], where a probability density function
is expressed using noncommutative harmonic analysis. This
idea of using Fourier analysis on manifolds has been applied
in [12], [13], [14], [15], and recently, results in [11] are
extended to include the effects of process noise and sensor
parameters in [16]. The use of noncommutative harmonic
analysis allows a probability density function to be expressed
globally on SO(3) without needing partition of unity meth-
ods on multiple coordinate charts.

The Liouville equation describes the evolution of a prob-
ability density function in the absence of external diffusion,
and can be viewed as the deterministic analogue of the
Fokker-Planck equation. When the flow advecting the proba-
bility density is Hamiltonian, the Liouville equation reduces
to an ordinary differential equation [17]. Thus, a probability
density function can be propagated using the flow map of the
Hamiltonian system. In [18], an attitude estimation scheme
is developed by linearizing the attitude dynamics along the
mean obtained from the probability density function propa-
gated by this property. However, nonlinearities of the flow
imply that numerical methods for propagating uncertainties
using linearization rapidly degrade in performance, unless
frequent physical measurements are available [19]. It is
therefore desirable to construct efficient numerical methods
for solving the Liouville equation that describes the evolution
of a probability density advected by a prescribed Hamiltonian
flow.

Geometric numerical integration preserves the geometric
properties of a dynamical system, such as invariants, sym-
metry, and reversibility [7]. We use a geometric numerical
integrator for a rigid body, referred to as a Lie group
variational integrator, that preserves the symplectic property
of the Hamiltonian dynamics and the group structure of the
configuration space [20], [21]. The Gromov nonsqueezing
theorem [22] from symplectic geometry places fundamental
limits on how the uncertainty of a Hamiltonian system
evolves [23]. It is therefore essential that symplectic methods
be used to propagate individual trajectories when analyzing
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uncertainty propagation in Hamiltonian systems.
The purpose of this paper is to present a computational

method to propagate uncertainties under the attitude dy-
namics of a rigid body on SO(3). It is assumed that an
initial probability density is prescribed. At a given future
time, we backpropagate sample points in TSO(3) along the
Hamiltonian flow of the rigid body dynamics, using a Lie
group variational integrator. We use the advected probabili-
ties to reconstruct the probability density at the given future
time using noncommutative harmonic analysis on SO(3).
This is in contrast to Monte Carlo methods, where the
sample trajectories are used to compute statistical properties
of the advected density. This also should be distinguished
from numerical methods based on a specific realization of a
stochastic Hamiltonian system [24], [25], [26].

The uncertainty propagation scheme we present has the
following important features. A probability density function
for the attitude dynamics of a rigid body is expressed
globally on TSO(3). The uncertainty is propagated through
the attitude dynamics on TSO(3). The approach ensures that
the uncertainty propagation inherits the geometric properties
of the time evolution of probability densities in Hamiltonian
systems.

This paper is organized as follows. In Section II, we
describe a specific attitude dynamics model, namely the
3D pendulum, and a Lie group variational integrator. An
uncertainty propagation scheme is proposed in Section III,
followed by computational results in Section IV. This devel-
opment is also applied to global attitude estimation.

II. ATTITUDE DYNAMICS OF A RIGID BODY

A. 3D Pendulum

A rigid 3D pendulum is a rigid body supported by a
fixed, frictionless pivot, acted on by a uniform gravitational
force [27]. The supporting pivot allows the pendulum three
rotational degrees of freedom. This is a nontrivial example
of a Hamiltonian system that evolves on a Lie group; this
example is used in the subsequent development.

Two reference frames are introduced. An inertial reference
frame has its origin at the pivot; the first two axes lie in the
horizontal plane and the third axis is vertical in the direction
of gravity. A reference frame fixed to the pendulum body is
also introduced. The origin of this body-fixed frame is also
located at the pivot. The configuration manifold is the special
orthogonal group SO(3),

SO(3) =
{
R ∈ R3×3 |RTR = I3×3, detR = 1

}
,

where the rotation matrix R ∈ SO(3) represents the linear
transformation from the body-fixed frame to the inertial
frame.

The dynamics of the 3D pendulum are given by the Euler
rigid body equation that includes the moment due to gravity:

JΩ̇ = JΩ× Ω +M, (1)

where the angular velocity in the body-fixed frame is denoted
by Ω ∈ R3, the inertia matrix is denoted by J ∈ R3×3, and

the vector M ∈ R3 represents the external moment due to
the gravitational potential. It is given by M = mgρ×RT e3,
where the vector ρ ∈ R3 represents the location of the center
of mass in the body-fixed frame, and the constants m and
g denote the mass of the pendulum and the gravitational
acceleration, respectively. The kinematic equation is

Ṙ = RS(Ω). (2)

For a given vector x ∈ R3, the 3×3 skew-symmetric matrix
S(x) is defined so that S(x)y = x× y for all y ∈ R3.

There are two disjoint equilibria when the direction of
gravity in the body fixed frame is collinear with the vector
ρ; the hanging equilibrium when RT e3 = ρ/ ‖ρ‖, and
the inverted equilibrium when RT e3 = −ρ/ ‖ρ‖. The 3D
pendulum exhibits surprisingly rich and complicated attitude
dynamics [19], and is therefore particularly appropriate for
demonstrating the properties of our global attitude uncer-
tainty propagation scheme.

B. Lie Group Variational Integrator

A Lie group variational integrator is a geometric numerical
integrator for Hamiltonian systems on a Lie group. As group
elements are updated according to the group operation, the
group structure is preserved without the use of local charts,
reprojection, or constraints. They are symplectic and momen-
tum preserving, and they exhibit good energy behavior for
an exponentially long time period [28].

The following Lie group variational integrator for the
attitude dynamics of a rigid body was presented in [20], [21]:

hS(JΩk +
h

2
Mk) = FkJd − JdFTk , (3)

Rk+1 = RkFk, (4)

JΩk+1 = FTk JΩk +
h

2
FTk Mk +

h

2
Mk+1, (5)

where the constant h ∈ R is the integration step size, and
the subscript k denotes the k-th integration step. The matrix
Jd ∈ R3×3 is a nonstandard inertia matrix given by Jd =
1
2 tr[J ] I3×3 − J , and Fk ∈ SO(3) is the relative attitude
between integration steps. This integrator yields a discrete
time flow map F : (Rk,Ωk) 7→ (Rk+1,Ωk+1) by solving
(3) to obtain Fk ∈ SO(3) and substituting it into (4) and (5)
to obtain Rk+1 and Ωk+1.

As the rotation matrix is updated with the product of
two rotation matrices in (4), the structure of SO(3) is
preserved automatically. Since this integrator is derived from
the discrete Hamilton’s principle, the symplectic structure
is conserved along the discrete-time flow. We use these
discrete-time equations of motion to propagate the attitude
dynamics.

III. GLOBAL SYMPLECTIC UNCERTAINTY PROPAGATION
ON SO(3)

Let a probability density function for the attitude and the
angular velocity of a rigid body at time tk be denoted by
pk(R,Ω) : SO(3) × R3 → R. In this section, we develop a
computational method to propagate this density along the
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Hamiltonian attitude dynamics assuming that there is no
process noise. Here we consider the full attitude dynamics
on TSO(3) ' SO(3) × R3, instead of simplifying it to a
kinematics equation by using a gyro bias model [2], [3].
We represent the propagated probability density function
globally on SO(3) using noncommutative harmonic analysis.
Later, a new method for visualizing the attitude uncertainty
on a two-sphere is also discussed.

A. Symplectic Uncertainty Propagation for a Hamiltonian
System

In [17], it is shown that the probability density function
is preserved along a Hamiltonian flow on Euclidean space.
In this subsection, we generalize this result to a Hamiltonian
system evolving on a general symplectic manifold.

Consider a Hamiltonian system on a 2n-dimensional
symplectic manifold (Q,ω), where Q is a 2n-dimensional
manifold and ω : TQ × TQ → R is a nondegenerate
symplectic two-form on Q [29]. The Liouville volume form
µ : (TQ)2n → R is defined as the n-fold wedge product
of the symplectic two-form with itself, µ = (−1)n(n−1)/2

n! ω ∧
· · · ∧ω (n times). In local coordinates, this corresponds to
the usual notion of the volume element in Euclidean spaces.
Let LXµ be the Lie derivative of the volume form µ along
a vector field X : Q → TQ. The divergence of a vector
field X on Q is defined as LXµ = divµ(X)µ. Thus, the
divergence divµ(X) represents the rate of change of a unit
volume along the vector field X .

In [4], it is shown that the Fokker-Planck equation for a
dynamical system on a manifold in the absence of diffusion
terms can be written as,

∂p

∂t
+ divµ (pX) = 0. (6)

Note that this has the same structure as the Euler equation for
the density of compressible fluids. The existence and unique-
ness of the solution of the equations of motion provides a
property analogous to mass conservation in fluid dynamics.

The time derivative of the probability density function is
given by

d

dt
p =

∂p

∂t
+ LXp. (7)

Using the property of the divergence, divµ (pX) =
p divµ (X) + LXp, and (6), this reduces to

d

dt
p =

∂p

∂t
+ divµ (pX)− p divµ (X)

= −p divµ (X). (8)

If the vector field X is a Hamiltonian vector field on (Q,ω),
the divergence vanishes, divµ (X) = 0 according to the Li-
ouville theorem [29]. Therefore, the Fokker-Planck equation
for a deterministic Hamiltonian system is represented by the
following ordinary differential equation

d

dt
p = 0. (9)

This states that the probability density function is pre-
served along a Hamiltonian flow without stochastic diffusion
effects. More precisely, (9) implies that the propagated prob-
ability density function at tk+1 can be explicitly expressed
as a composition of the backward flow map and the given
probability density function at tk

pk+1(R,Ω) = pk(F−1(R,Ω)), (10)

where F : SO(3) × R3 → SO(3) × R3 is the discrete flow
map for the attitude dynamics. We can apply this equation
recursively to propagate the probability density function over
any time interval.

B. Noncommutative Harmonic Analysis on SO(3)

Equation (10) provides a method to compute the proba-
bility density function at any time based on the probability
density function at some prior time. As the flow is non-
linear, it is inefficient to characterize the density using its
moments, since the moment expansion may decay slowly.
Here, we propose a computational scheme that represents the
probability density function for the attitude dynamics using
noncommutative harmonic analysis on SO(3).

Noncommutative harmonic analysis is a generalization of
Fourier analysis on Euclidean spaces to manifolds [4]. This
is particularly useful since it provides a mathematical tool to
approximate a probability density function based on samples
of that function. More precisely, the propagated probability
density function for the attitude dynamics of a rigid body
can be expressed as

p(R,Ω) =
∞∑
l=0

2l + 1
(2π)3

∫
R3

exp(jθ · Ω) tr
[
P l(θ)U l(R)

]
dθ,

(11)

where the vector θ ∈ R3 and non-negative integer l ∈
N
⋃
{0} are Fourier parameters, and the set of complex

matrices {P l(θ) ∈ C(2l+1)×(2l+1)}∞l=0 is the Fourier spec-
trum of the density p(R,Ω). We denote the l-th irreducible
unitary representation of SO(3) by U l(R) ∈ C(2l+1)×(2l+1).
A representation of a group is a homomorphism from the
group to the set of invertible matrices, and by the Peter-Weyl
theorem [30], the irreducible unitary representations form a
complete orthonormal basis for the set of square-integrable
functions on the group. The irreducible unitary representa-
tions can be expressed in various ways. For example, it can
be expressed in terms of the wigner-d functions using 3-1-3
Euler angles α, β, γ as

U lm,n(R(α, β, γ)) = im−ne−i(mα+nγ)dlm,n(cosβ) (12)

for −l ≤ m,n ≤ l [31]. The first few wigner-d functions
are given by

d0(cosβ) = 1,

d1(cosβ) =


1+cos β

2 − sin β√
2

1−cos β
2

sin β√
2

cosβ − sin β√
2

1−cos β
2

sin β√
2

1+cos β
2

 .
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Higher order wigner-d functions can be obtained using a
recurrence relation [4].

From the orthnormal property of the irreducible unitary
representation, the Fourier spectrum is computed by

P l(θ) =
∫

SO(3)

∫
R3
p(R,Ω) exp(−jθ · Ω)U l(R−1)dΩ dR.

(13)

The volume element for the rotation matrix dR represents the
Haar measure of SO(3); it can be written in terms of 3-1-3
Euler angles α, β, γ as dR(α, β, γ) = 1

8π2 sinβ dαdβdγ.
Substituting (10), we can compute the Fourier spectrum of

the propagated probability density function. The propagated
distribution can be reconstructed by (11). This is a global
particle-based method to construct the propagated probability
density function on SO(3)× R3.

C. Visualization of the Attitude Uncertainty

Let pR : SO(3) → R be a probability density function
on SO(3). For example, it can be obtained by integrating
(11) over R3, i.e. pR(R) =

∫
R3 p(R,Ω)dΩ. We propose a

method for visualizing probability densities on SO(3) using
three copies of two-spheres. The rotation matrix represents a
linear transformation from a body fixed frame to an inertial
frame. Therefore, the i-th column of the rotation matrix Rei
represent the direction of the i-th body fixed axis in the
inertial frame for i ∈ {1, 2, 3}. Since the vector Rei lies
on the two-sphere S2, we can visualize uncertainties of Rei
on a sphere either by color shading or by contour lines. Three
copies of these spheres, one for each of the body fixed axes,
can be used to visualize uncertainties on SO(3).

We find a marginal probability density of pR for each
column of the rotation matrix. For given r ∈ S2, define a
subset Hi(r) of SO(3) as

Hi(r) =
{
R ∈ SO(3)

∣∣Rei = r
}

(14)

for i ∈ {1, 2, 3}. This represents the set of rotation matrices
whose i-th column is equal to the given direction r. Notice
that Hi(r) is invariant under the right action of a rotation
about ei, i.e., Hi(r) = Hi(r) expS(θei), where θ ∈ S1. As
such, we can parameterize Hi(r) in terms of θ ∈ S1 and a
representative element R◦i (r) of Hi(r). More explicitly, we
can choose R◦i (r) = exp( acos(r·ei)

‖ei×r‖ S(ei × r)) if ei × r 6= 0.
Then, the set Hi(r) is parameterized as

Hi(r) =
{
R◦i (r) expS(θei)

∣∣ θ ∈ S1
}
. (15)

The corresponding quotient space is the two-sphere,
SO(3)/Hi(r) ' S2. Using the properties of integration on a
quotient space of a Lie group, we have

1 =
∫

SO(3)

pR(R) dR

=
∫
r∈S2

(
1

2π

∫
θ∈S1

pR(R◦i (r) expS(θei) dθ
)
dr. (16)

(a) Density 1 (b) Density 2

(c) Density 3 (d) Sample attitudes for the den-
sity 3

Fig. 1. Attitude uncertainty visualization example

Therefore, the marginal probability density for the i-th col-
umn of the rotation matrix, piR : S2 → R is given by

piR(r) =
1

2π

∫
θ∈S1

pR(R◦i (r) exp(θêi)) dθ. (17)

We plot these marginal probability density functions
piR(r), that represent the probability density of the direction
of the body fixed axes, on three two-spheres. If the magnitude
of uncertainties is small, we can plot uncertainties for each
body fixed axis on a single sphere, from which we can
intuitively understand the attitude uncertainty of the rigid
body.

Fig. 1 shows examples for the attitude probability density
visualization. It is easily to see that the second density in
Fig. 1(b) has smaller variation than the first density in Fig.
1(b). In the third density in Fig. 1(c), the vertical axis has
smaller variation than the other horizontal axes. If we take
a few samples from this density, we are likely to obtain the
attitudes illustrated by Fig. 1(d), which reflect the fact that
the direction of the vertical axis of the body in the inertial
frame is well localized, but there is larger variation in the
direction of other axes.

IV. NUMERICAL COMPUTATIONS

In this section, we propagate an initial probability density
along the nontrivial dynamics of the 3D pendulum, and
we visualize the attitude uncertainty. The properties of the
pendulum are given by

J = diag[0.13, 0.28, 0.17] kgm2, m = 1 kg,

ρ = 0.3e3 m, g = 9.81 m/s2.

The von Mises distribution (also known as the circular
normal distribution) is a continuous probability density on
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the circle, which can be thought of as the circular analogue
of the normal density [32].

p(θ) =
1

2πI0(κ)
exp

(
κ cos(θ − θ)

)
, (18)

where I0 is the zeroth order modified Bessel function of the
first kind, given by I0(κ) =

∑∞
i=0

(1/4κ2)i

(κ!)2 with parameters
κ, θ that determine the shape of the density; as κ increases,
the density approaches a normal density with mean θ and
variance 1

κ .
For two given rotation matrices R,R ∈ SO(3), the

quantity 1
2 (tr
[
R
T
R
]
−1) represents the cosine of the rotation

angle between the two attitudes. Using this, we define a
probability density function on SO(3) from the von Mises
distribution. The probability distribution at the initial time is
chosen as

p0(R,Ω) =
1
c

exp
{

1
2
κ
(

tr
[
R
T

0 R
]
− 1
)}

× exp
{
−1

2
(Ω− Ω0)TΣ−1(Ω− Ω0)

}
, (19)

where R0 = I3×3, Ω0 = [4.14, 4.14, 4.14] rad/s, Σ =
0.14142I3×3, and κ = 8. The constant c is a scaling factor
chosen such that

∫
p(R,Ω) dRdΩ = 1. The corresponding

mean (R0,Ω0) yields an irregular, perhaps chaotic, attitude
response [19].

We propagate this initial distribution using (10) and com-
pute the Fourier spectrum using (13). The volume integration
is approximated by Simpson’s rule, and the flow map is
computed using the Lie group variational integrator. The ap-
plication of the Lie group variational integrator is particularly
useful since it is symplectic, group structure preserving, and
time reversible.

We have developed a parallel computing code using the
MPI (Message Passing Interface) library, where the domain
of integration is divided uniformly and distributed to each
processor. This is desirable in terms of minimizing commu-
nication between processors and balancing the computational
load among the processors. This algorithm has been imple-
mented on 32 AMD Opeteron processors. Fig. 2 illustrates
the propagated attitude uncertainty.

V. COMMENTS ON GLOBAL ATTITUDE ESTIMATION

The presented uncertainty propagation method can be
applied to develop an attitude estimation scheme using Bayes
rule. We first define a measurement model. We assume that
the attitude and the angular velocity are measured by sensors
to obtain

zk = Z(Rk,Ωk) + vk, (20)

where Z : SO(3) × R3 → Rm is a measurement function,
zk ∈ Rm is the measured value, and vk ∈ Rm is measure-
ment noise. For example, if we measure a direction to a
known object a ∈ S2 and the angular velocity, the measure-
ment function can be written as Z(R,Ω) = [RTa; Ω]. We
assume the probability density of the measurement noise vk
is given by pzk|k, and it is an independent process.

(a) t = 0.0 (b) t = 0.1

(c) t = 0.2 (d) t = 0.4

(e) t = 1.0

Fig. 2. Propagated attitude uncertainty and max mean attitude

The set of all measurements from the initial time to tk
is denoted by Zk = [z0, z1, . . . , zk]. Suppose that we have
a probability density function at the k-th time conditioned
by Zk, i.e., the expression for pk|Zk

is known, and a new
measurement is obtained zk+1 at tk+1. Estimation can be
described as finding an expression for pk+1|Zk+1 given pk|Zk

and Zk+1 = [Zk, zk+1]. Using Bayes rule [33], we have

pk+1|Zk+1(R,Ω|[Z, z])

=
pzk+1|k+1,Zk

(z|R,Ω, Z) pk+1|Zk
(R,Ω|Z)

pzk+1|Zk
(z|Z)

.

(21)

Since the measurement processes are independent, we
have pzk+1|k+1,Zk

= pzk+1|k+1, and the propagated
density is given by (10), i.e., pk+1|Zk

(R,Ω|Z) =
pk|Zk

(F−1(R,Ω)|Z). The denominator is a normalizing
constant that can be computed to satisfy pzk+1|Zk

(z|Z) =∫
SO(3)×R3 pzk+1|k+1(R,Ω)pk+1|Zk

(R,Ω|Z)dRdΩ. In sum-
mary, the propagated probability density conditioned by the
new measurement is given by

pk+1|Zk+1(R,Ω|[Z, z])

=
1
c
pzk+1|k+1(z|R,Ω) pk|Zk

(F−1(R,Ω)|Z) (22)
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for a normalizing constant c. This also can be represented
using the harmonic analysis as in (11).

This expression is the key to solving the attitude estimation
problem. This expression for pxk+1|Zk+1 contains all the
statistical information that can be derived from the attitude
dynamics and the available measurements obtained up to
the current time tk+1. For example, using this probability
density, we can compute the mean or the variance.

VI. CONCLUSIONS

This paper addresses the problem of propagating the
attitude uncertainty of a rigid body which evolves on the
rotation group. The use of noncommutative harmonic anal-
ysis techniques to represent the uncertainty distribution in a
global fashion overcomes a fundamental limitation of exist-
ing techniques, which implicitly assume that the uncertainty
is localized or small. By exploiting the fact that the Liouville
equation for a Hamiltonian system reduces to an ordinary
differential equation, we are able to adopt a particle based
approach for computing the advected probability density,
thereby avoiding the computational expense of solving the
equation as a numerical partial differential equation. By
adopting a Lie group variational integrator as the underlying
numerical scheme, we ensure that the resulting uncertainty
propagation method inherits the geometric properties of
the time evolution of probability densities in Hamiltonian
systems, that arise from the symplectic geometry of the phase
space.

A natural application of the proposed scheme is to the
problem of global attitude estimation, particularly when the
dynamics of the rigid body are extremely nonlinear, and the
attitude measurements are relatively infrequent. Estimation
problems with such characteristics are problematic for tradi-
tional techniques, such as the Kalman filter, which require
frequent measurements, and relatively benign dynamics, in
order to justify the localization and linearization assumptions
built into the method.

REFERENCES

[1] J. Crassidis, F. Markley, and Y. Cheng, “Survey of nonlinear attitude
estimation methods,” Journal of Guidance, Control, and Dynamics,
vol. 30, no. 1, pp. 12–28, 2007.

[2] E. Lefferts, F. Markley, and M. Shuster, “Complementary filter design
on the special orthogonal group SO(3),” in Proceedings of the AIAA
Aerospace Sciences Meeting, 1982, AIAA-1982-70.

[3] R. Mahony, T. Hamel, and J. Pflimlin, “Complementary filter design
on the special orthogonal group SO(3),” in Proceedings of the IEEE
Conference on Decision and Control, 2005, pp. 1477–1484.

[4] G. Chirikjian and A. Kyatkin, Engineering applications of noncom-
mutative harmonic analysis. Boca Raton, FL: CRC Press, 2001.

[5] D. Xiu, “Efficient collocational approach for parametric uncertainty
analysis,” Commun. Comput. Phys., vol. 2, no. 2, pp. 293–309, 2007.

[6] D. Xiu and J. Hesthaven, “High-order collocation methods for differ-
ential equations with random inputs,” SIAM J. Sci. Comput., vol. 27,
no. 3, pp. 1118–1139 (electronic), 2005.

[7] E. Hairer, C. Lubich, and G. Wanner, Geometric Numerical Inte-
gration, 2nd ed., ser. Springer Series in Computational Mathematics.
Springer-Verlag, 2006, vol. 31.

[8] P. Diaconis, Group Representations in Probability and Statistics.
Institute of Mathematical Statistics, 1988.

[9] K. Elworthy, Stochastic Differential Equations on Manifolds. Cam-
bridge University Press, 1982.

[10] M. Emery, Stochastic Calculus in Manifolds. Springer, 1989.

[11] J. Lo and L. Eshleman, “Exponential Fourier densities on SO(3)
and optimal estimation and detection for rotational processes,” SIAM
Journal on Applied Mathematics, vol. 36, no. 1, pp. 73–82, 1979.

[12] H. Hendriks, “Nonparametric estimation of a probability density on
a Riemannian manifold using Fourier expansions,” The Annals of
Statistics, vol. 18, no. 2, pp. 832–849, 1990.

[13] P. Kim, “Deconvolution density estimation on SO(n),” The Annals of
Statistics, vol. 26, no. 3, pp. 1083–1102, 1998.

[14] W. Park, J. Kim, Y. Zhou, N. Cowan, A. Okamura, and G. Chirikjian,
“Diffusion-based motion planning for a nonholonomic flexible needle
model,” in Proceedings of the 2005 IEEE International Conference on
Robotics and Automation, 2005.

[15] Y. Wang, Y. Zhou, D. Maslen, and G. Chirikjian, “Solving phase-noise
Fokker-Planck equations using the motion-group Fourier transform,”
IEEE Transactions on Communications, vol. 54, no. 5, pp. 868–877,
2006.

[16] F. Markley, “Attitude filtering on SO(3),” in Proceedings of the AAS
Malcolm D. Shuster Astronautics Symposium, 2005, AAS 05-460.

[17] D. Scheeres, F. Hsiao, R. Park, B. Villac, and J. Maruskin, “Funda-
mental limits on spacecraft orbit uncertainty and distribution propa-
gation,” in Proceedings of the AAS Malcolm D. Shuster Astronautics
Symposium, 2005, AAS 05-471.

[18] J. Valpiani and P. Palmer, “Nonliner symplectic attitude estimation
for small satellitese,” in Proceedings of the AIAA/AAS Astrodynamics
Specialist Conference and Exhibit, 2006, AIAA 2006-6159.

[19] T. Lee, N. Chaturvedi, A. Sanyal, M. Leok, and N. H. McClamroch,
“Propagation of uncertainty in rigid body attitude flows,” in Proceed-
ings of the IEEE Conference on Decision and Control, 2007, pp. 2689–
2694.

[20] T. Lee, M. Leok, and N. H. McClamroch, “Lie group variational
integrators for the full body problem,” Computer Methods in Applied
Mechanics and Engineering, vol. 196, pp. 2907–2924, May 2007.

[21] ——, “Lie group variational integrators for the full body problem in
orbital mechanics,” Celestial Mechanics and Dynamical Astronomy,
vol. 98, no. 2, pp. 121–144, June 2007.

[22] M. Gromov, “Pseudo holomorphic curves in symplectic manifolds,”
Invent. Math., vol. 82, no. 2, pp. 307–347, 1985.

[23] F. Hsiao and D. J.Scheeres, “Fundamental constraints on uncertainty
evolution in Hamiltonian systems,” IEEE Transactions on Automatic
Control, vol. 52, no. 4, pp. 686–691, 2007.

[24] J. Lazaro-Cami and J. Ortega, “Stochastic Hamil-
tonian dynamical systems,” 2007. [Online]. Available:
http://www.citebase.org/abstract?id=oai:arXiv.org:math/0702787

[25] N. Bou-Rabee and H. Owhadi, “Stochas-
tic variational integrators,” 2007. [Online]. Available:
http://www.citebase.org/abstract?id=oai:arXiv.org:0708.2187

[26] L. Wang, “Variational integrators and generating functions for stochas-
tic hamiltonian systems,” Ph.D. dissertation, Universität Karlsruhe,
2007.

[27] J. Shen, A. Sanyal, N. Chaturvedi, D. Bernstein, and N. McClamroch,
“Dynamics and control of a 3D pendulum,” Proceedings of the IEEE
Conference on Decision and Control, pp. 323–328, 2004.

[28] T. Lee, “Computational geometric mechanics and control of rigid
bodies,” Ph.D. dissertation, University of Michigan, 2008.

[29] J. Marsden and T. Ratiu, Introduction to Mechanics and Symmetry.
Springer, 1999.

[30] F. Peter and H. Weyl, “Die vollständigkeit der primitiven darstellungen
einer geschlossenen kontinuierlichen gruppe,” Math. Ann., vol. 97, pp.
735–755, 1927.

[31] L. Biedenharn and J. Louck, Angular Momentum in Quantum Physics.
Addison-Wesley, 1981.
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