Invertible Linear Mappings

A mapping $L: X \to Y$ is called **invertible** if there exists $L^{-1}: Y \to X$ such that

$$L^{-1} \circ L = \operatorname{Id}_X, \quad L \circ L^{-1} = \operatorname{Id}_Y.$$

We call L^{-1} the **inverse** of *L*.

Theorem

If $L: X \to Y$ is linear and invertible, then the inverse L^{-1} is linear.

If $L: X \to Y$ is linear and invertible, then the inverse L^{-1} is linear. **Proof**

1. Let
$$\alpha \in \mathbb{R}$$
 and $y \in Y$. Set $x := L^{-1}(y)$. Since $L(\alpha x) = \alpha y$,

we have

$$\alpha L^{-1}(y) = \alpha x = L^{-1}(\alpha y).$$

2. Let $y_1, y_2 \in Y$. Set $x_1 = L^{-1}(y_1)$ and $x_2 = L^{-1}(y_2)$. Since $L(x_1 + x_2) = y_1 + y_2$

we have

$$L^{-1}(y_1 + y_2) = x_1 + x_2 = L^{-1}(y_1) + L^{-1}(y_2).$$

Hence L^{-1} is linear.

Let $L: X \to Y$ be an invertible linear mapping and let $A \subseteq X$.

- 1. A is linearly independent if and only if L(A) is linearly independent.
- 2. We have spanL(A) = L(spanA).
- 3. A is a basis if and only if L(A) is a basis.

Corollary

The image of a subspace under a linear mapping is again a subspace.

Corollary

Let $S \subseteq X$ be a subspace of dimension k and let $L : X \to Y$ be an invertible linear mapping. Then L(S) is a subspace of dimension k.

Let $v_1, \ldots, v_n \in V$ and let $L : V \to W$ be invertible. Write $w_1 = Lv_1, \quad \ldots, \quad w_n = Lv_n.$

Then v_1, \ldots, v_n is linearly dependent if and only if w_1, \ldots, w_n is linearly dependent .

Proof.

If $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$ with $0 = \alpha_1 v_1 + \cdots + \alpha_n v_n$, then $0 = L(0) = \alpha_1 L(v_1) + \cdots + \alpha_n L(v_n)$ $= \alpha_1 w_1 + \cdots + \alpha_n w_n.$

So linear dependence of v_1, \ldots, v_n implies linear dependence of w_1, \ldots, w_n .

Since *L* is invertible and linear, the inverse L^{-1} is linear. Hence the converse implication follows analogously.

Let $v_1, \ldots, v_n \in V$ and let $L : V \to W$ be invertible. Write $w_1 = Lv_1, \quad \ldots, \quad w_n = Lv_n.$

Then v_1, \ldots, v_n is a spanning set for V if and only if w_1, \ldots, w_n is a spanning set for W.

Proof.

Let $w \in W$. There exists $v \in V$ with L(v) = w. There exist $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$ with $v = \alpha_1 v_1 + \cdots + \alpha_n v_n$. Consequently,

$$w = L(v) = \alpha_1 L(v_1) + \dots + \alpha_n L(v_n)$$
$$= \alpha_1 w_1 + \dots + \alpha_n w_n.$$

So v_1, \ldots, v_n being a spanning set implies w_1, \ldots, w_n being a spanning set.

Since *L* is invertible and linear, the inverse L^{-1} is linear. Hence the converse implication follows analogously.

Basis Transformations

Let V be an *n*-dimensional vector space with two different bases:

$$v_1,\ldots,v_n,$$

 $w_1,\ldots,w_n.$

We let $A = (a_{ij}) \in \mathbb{R}^{n \times n}$ be defined by

$$v_i = a_{i1}w_1 + \cdots + a_{in}w_n.$$

If $\alpha_1, \ldots, \alpha_n, \beta_1, \ldots, \beta_n \in \mathbb{R}$ with

$$\alpha_1 \mathbf{v}_1 + \dots + \alpha_n \mathbf{v}_n = \beta_1 \mathbf{w}_1 + \dots + \beta_n \mathbf{w}_n,$$

then

$$\begin{pmatrix} a_{11} & \dots & a_{n1} \\ \vdots & \ddots & \vdots \\ a_{1n} & \dots & a_{nn} \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix} = \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_n \end{pmatrix}$$

$$\begin{pmatrix} a_{11} & \dots & a_{n1} \\ \vdots & \ddots & \vdots \\ a_{1n} & \dots & a_{nn} \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix} = \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_n \end{pmatrix}$$

Indeed,

$$\sum_{i=1}^{n} \alpha_i \mathbf{v}_i = \sum_{i=1}^{n} \alpha_i \sum_{j=1}^{n} a_{ij} \mathbf{w}_j = \sum_{j=1}^{n} \underbrace{\left(\sum_{i=1}^{n} a_{ij} \alpha_i\right)}_{=\beta_j} \mathbf{w}_j$$

We call the matrix A the **basis transition matrix** from the basis v_1, \ldots, v_n to the basis w_1, \ldots, w_n .

The basis transition matrix is necessarily invertible. Otherwise we had a linear dependence between basis vectors.

The inverse of a basis transition matrix is again a basis transition matrix, with the roles of the bases reversed.

If we have three bases

 $u_1, \ldots, u_n,$ $v_1, \ldots, v_n,$ $w_1, \ldots, w_n,$

and let $B_{uv}, B_{vw} \in \mathbb{R}^{n \times n}$ denote the basis transition matrices from u_1, \ldots, u_n to v_1, \ldots, v_n and from w_1, \ldots, w_n to w_1, \ldots, w_n , respectively, then

$$B_{uw} = B_{vw} \circ B_{uv} \in \mathbb{R}^{n \times n}$$

is the basis transition matrix from u_1, \ldots, u_n to w_1, \ldots, w_n .

Every invertible matrix can be thought of as basis transition matrix with respect to some bases:

Pick $A \in \mathbb{R}^{n \times n}$ invertible and a basis v_1, \ldots, v_n . Then

$$w_1 = Av_1, \ldots, w_n = Av_n,$$

is a basis, and A^{-1} is the basis transition matrix from the basis v_1, \ldots, v_n to the basis w_1, \ldots, w_n .

If w_1, \ldots, w_n were linearly dependent with some coefficients β_1, \ldots, β_n , then an application of the inverse matrix A^{-1} would give coefficients $\alpha_1, \ldots, \alpha_n$ that yield a linear dependence of v_1, \ldots, v_n .

Questions?