
Invertible Linear Mappings



A mapping L : X → Y is called invertible if there exists

L−1 : Y → X such that

L−1 ◦ L = IdX , L ◦ L−1 = IdY .

We call L−1 the inverse of L.

Theorem

If L : X → Y is linear and invertible, then the inverse L−1 is linear.
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Theorem

If L : X → Y is linear and invertible, then the inverse L−1 is linear.

Proof

1. Let α ∈ R and y ∈ Y . Set x := L−1(y). Since

L(αx) = αy ,

we have
αL−1(y) = αx = L−1 (αy) .

2. Let y1, y2 ∈ Y . Set x1 = L−1(y1) and x2 = L−1(y2). Since

L (x1 + x2) = y1 + y2

we have

L−1(y1 + y2) = x1 + x2 = L−1(y1) + L−1(y2).

Hence L−1 is linear.

2



Theorem

Let L : X → Y be an invertible linear mapping and let A ⊆ X .

1. A is linearly independent if and only if L(A) is linearly

independent.

2. We have spanL(A) = L(spanA).

3. A is a basis if and only if L(A) is a basis.

Corollary

The image of a subspace under a linear mapping is again a

subspace.

Corollary

Let S ⊆ X be a subspace of dimension k and let L : X → Y be an

invertible linear mapping. Then L(S) is a subspace of dimension k .
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Theorem

Let v1, . . . , vn ∈ V and let L : V →W be invertible. Write

w1 = Lv1, . . . , wn = Lvn.

Then v1, . . . , vn is linearly dependent if and only if w1, . . . ,wn is

linearly dependent .

Proof.

If α1, . . . , αn ∈ R with 0 = α1v1 + · · ·+ αnvn, then

0 = L(0) = α1L(v1) + · · ·+ αnL(vn)

= α1w1 + · · ·+ αnwn.

So linear dependence of v1, . . . , vn implies linear dependence of

w1, . . . ,wn.

Since L is invertible and linear, the inverse L−1 is linear. Hence the

converse implication follows analogously.
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Theorem

Let v1, . . . , vn ∈ V and let L : V →W be invertible. Write

w1 = Lv1, . . . , wn = Lvn.

Then v1, . . . , vn is a spanning set for V if and only if w1, . . . ,wn is

a spanning set for W .

Proof.

Let w ∈W . There exists v ∈ V with L(v) = w . There exist

α1, . . . , αn ∈ R with v = α1v1 + · · ·+ αnvn. Consequently,

w = L(v) = α1L(v1) + · · ·+ αnL(vn)

= α1w1 + · · ·+ αnwn.

So v1, . . . , vn being a spanning set implies w1, . . . ,wn being a

spanning set.

Since L is invertible and linear, the inverse L−1 is linear. Hence the

converse implication follows analogously. 5



Basis Transformations



Let V be an n-dimensional vector space with two different bases:

v1, . . . , vn,

w1, . . . ,wn.

We let A = (aij) ∈ Rn×n be defined by

vi = ai1w1 + · · ·+ ainwn.

If α1, . . . , αn, β1, . . . , βn ∈ R with

α1v1 + · · ·+ αnvn = β1w1 + · · ·+ βnwn,

then a11 . . . an1
...

. . .
...

a1n . . . ann


α1

...

αn

 =

β1...
βn
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a11 . . . an1
...

. . .
...

a1n . . . ann


α1

...

αn

 =

β1...
βn


Indeed,

n∑
i=1

αivi =
n∑

i=1

αi

n∑
j=1

aijwj =
n∑

j=1

(
n∑

i=1

aijαi

)
︸ ︷︷ ︸

=βj

wj
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We call the matrix A the basis transition matrix from the basis

v1, . . . , vn to the basis w1, . . . ,wn.

The basis transition matrix is necessarily invertible. Otherwise we

had a linear dependence between basis vectors.

The inverse of a basis transition matrix is again a basis transition

matrix, with the roles of the bases reversed.
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If we have three bases

u1, . . . , un,

v1, . . . , vn,

w1, . . . ,wn,

and let Buv ,Bvw ∈ Rn×n denote the basis transition matrices from

u1, . . . , un to v1, . . . , vn and from w1, . . . ,wn to w1, . . . ,wn,

respectively, then

Buw = Bvw ◦ Buv ∈ Rn×n

is the basis transition matrix from u1, . . . , un to w1, . . . ,wn.
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Every invertible matrix can be thought of as basis transition matrix

with respect to some bases:

Pick A ∈ Rn×n invertible and a basis v1, . . . , vn. Then

w1 = Av1, . . . ,wn = Avn,

is a basis, and A−1 is the basis transition matrix from the basis

v1, . . . , vn to the basis w1, . . . ,wn.

If w1, . . . ,wn were linearly dependent with some coefficients

β1, . . . , βn, then an application of the inverse matrix A−1 would

give coefficients α1, . . . , αn that yield a linear dependence of

v1, . . . , vn.

10



Questions?
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