Eigenvalues and Eigenvectors



Let A € R™" be a matrix.

If A€ Rand v eR" v#D0, with

Av = Av,

then we call

1. X an eigenvalue of A,
2. v an eigenvector of A,
3. and (\, v) an eigenpair of A

Eigen, adjective: “own”, “intrinsic”.
First use in Linear Algebra in 1904 by David Hilbert.



Let A € R and v € R"” with v # 0.
The following are equivalent:
1. (A, v) is an eigenpair of A
2. Av = \v
3. (A= Ald)v=0
4. v € ker (A—XId)

Conclusion: A is an eigenvalue of A if A— Ald is a singular matrix.
This is the case exactly then if det (A — Ald) = 0.
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Let A € R and v € R"” with v # 0.
The following are equivalent:
1. (A, v) is an eigenpair of A
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Let A € R™" be a matrix. The characteristic polynomial of A is

a1l — A ai? . din
ani any — )\ Ce aon
pa(A) :=det (A — Ald) = det _
anl an2 dnn — A

For A € R we have

pa(A) =0 <= det(A— Ald) =0.

The matrix A — Ald is singular if and only if A is a root of the

characteristic polynomial of A.



Let A€ R™" and let pa be the characteristic polynomial. By the
Fundamental Theorem of Algebra, we can write

pa(A)
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where the A1,..., A\, € C are the roots of the polynomial.
(The leading term A" has coefficient (—1)".)

The A1,..., A\, are not necessarily distinct. The algebraic
multiplicity ©*(A, ) is the number how often an eigenvalue
appears as a root of the characteristic polynomial.
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where the A1,..., A, € C are the roots of the polynomial.
(The leading term A" has coefficient (—1)".)

The A1,..., A\, are not necessarily distinct. The algebraic
multiplicity ©*(A, ) is the number how often an eigenvalue
appears as a root of the characteristic polynomial.

Generally, the roots of a characteristic polynomial may be complex
numbers. (Fundamental Theorem of Algebra)
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Example

2 31 2-) =8 1
A=11 -2 1|, pa(A)=det 1 -2-x 1 ,
1 -3 2 1 -3 2-A

We compute
pa(A) = =23 42)02 - A = —A(A—1)?

The roots of the polynomial py are precisely 0 and 1. The
eigenvalue 0 has algebraic multiplicity 1 and the eigenvalue 1 has
algebraic multiplicity 2:

p*(A0) =1, p*(Al)=2,



Example
What are the eigenvectors?

2 =8
1 -2
1 -3 2 1
2 31 -1
1 -2 1
1 -3 2 1
2 31 3
1 -2 1 1
1 -3 2 0



Example

_ [cos(8) —sin(0)  de cos(f) — X —sin(h)
A= (sin(@) cos(0) ) + Pa(d) = det ( sin(f)  cos(f) — A) ’

We compute
pa(A) = sin(#)? + (cos(f) — \)?
= sin(0)? + cos(8)? — 2X cos(6) + A\
= X2 — 2\ cos(h) + 1

Any root of this polynomial must satisfy
cos(0)? — 1 = (X — cos(6))?

The left-hand side is negative unless 6 is an integer multiple of m,

so the eigenvalues are complex unless 6 is an integer multiple of .



Example

[ cos(8) sin(0) B cos(f) — X sin(0)
A= (— sin(0) cos(@)) + Pa(d) = det ( —sin(f)  cos(f) — A) ’

We compute
pa(A) = sin(#)? + (cos(#) — \)?
= sin(0)? + cos(8)? — 2X cos(6) + A\
= X2 — 2\ cos(h) + 1

Any root of this polynomial must satisfy
—sin(0)? = (A — cos(6))?

The left-hand side is negative unless 6 is an integer multiple of m,

so the eigenvalues are complex unless 6 is an integer multiple of .
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Example
The eigenvalues are

A1 = cos(f) +sin(0)i, A2 = cos(f) — sin(0)i.

We check that
cos(f) sin(6) 1y N 1
—sin(0) cos(0) i)t
cos(f)  sin(0) 1) _ N ( 1 )
—sin(f) cos(f) ) \ —i i)
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The characteristic polynomial py of A € C"™" is defined as

air — A ai2 cee dln
an dano — )\ e aon
pa()) = det (A — AId) = det '
anl an2 5oa adnn — A

The scalar A € C is an eigenvalue of A if and only if it is a root of
the characteristic polynomial.

Can we use special structures of the matrix to find the eigenvalues?
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Example

Let A € C™" be a triangular matrix.

ail — A ai2 . ain
0 am — A ... azn
pa(\) = det (A — A1d) = det
0 0 R L

:(311_)\).(322_)\).....(3,7”_)\)

The eigenvalues of a triangular matrix are the diagonal elements:

pa(A) = H (aii — A).

1<i<n
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How to find the eigenvectors? If A € C is an eigenvalue of A € R",
then the eigenvectors for that eigenvalue are the solutions of the

homogeneous linear system of equations

(A= \ld)-v=0.

Possible strategy: Bring A — Ald into reduced row echelon form
and determine the nullspace from there.

14
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Theorem

A matrix A € C"*" is nonsingular if and only if O is not an
eigenvalue of A.
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Theorem

A matrix A € C"™" is nonsingular if and only if O is not an
eigenvalue of A.

Proof.
The following are equivalent:

1. O is an eigenvalue of A

. The matrix A — 0ld has a non-trivial kernel.

2

3. The matrix A has a non-trivial kernel.

4. There exists v € C”, v # 0, with Av = 0.
5

. The matrix A is singular.

16



Theorem
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2.

3. The matrix A has a non-trivial kernel.
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Theorem

A matrix A € C"™" is nonsingular if and only if O is not an

eigenvalue of A.

Proof.
The following are equivalent:

1.

0 is an eigenvalue of A

. The matrix A — 0ld has a non-trivial kernel.
. The matrix A has a non-trivial kernel.

2
3
4.
5

There exists v € C”, v # 0, with Av = 0.

. The matrix A is singular.
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Theorem
Let Ac C"*". Then

det(A) = J] A
1<i<n
where A1, ..., A, are the eigenvalues of A (repeated according to

algebraic multiplicity).
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Theorem
Let Ac C"*". Then

det(A) = J] A
1<i<n
where A1, ..., A, are the eigenvalues of A (repeated according to

algebraic multiplicity).

Proof.
We have

PAC) = (~1)" (A= 1)+ (A= )
Then pa(0) = Ay ----- An. But we also have

pa(0) = det A

Hence the claim follows.



Theorem
Let A,B,S € C™" with S invertible and A= S™1BS. Then

pa(A) = ps(A).

Proof.
We have

det (A — A1d) = det (S™'BS — Ald)

=det (S7!BS—AS'1dS)

=det (S (B —Ald)S)

= det (S71) det (B — A 1d) det (S)
(

= det (S7) det (S) det (B — Ald)
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Important Slide

Let A€ C™". Then the following are equivalent:

1
2
3
4
5.
6
7
8
9

. Als invertible.

. Ax =0 if and only if x =0.

. Ax = b always has a solution.
. det(A) #0.

0 is not an eigenvalue of A.

. A has an n-dimensional row space.
. A has an n-dimensional column space.

. A has full rank.

. The row echelon form of A has only non-zero diagonal entries.
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Important Slide, contd.

Let A € C™". Then the following are equivalent:

1.

10.
11.
12.
13.
14.
15.

A is invertible.

The rows of A are a basis of C”

The rows of A are a spanning set of C”
The rows of A are linearly independent.
The columns of A are a basis of C”

The columns of A are a spanning set of C”

The columns of A are linearly independent.
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Theorem

Let A € C™" with different eigenvalues \1,...,\m, m < n. Let
vi,...,Vm be respective eigenvectors for these eigenvalues. Then
Vi,...,Vm are linearly independent.

Proof.

Proof by induction. The claim is obviously true for m = 1.
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Theorem
Let A € C™" with different eigenvalues \1,...,\m, m < n. Let
vi,...,Vm be respective eigenvectors for these eigenvalues. Then

Vi,...,Vm are linearly independent.

Proof.

Proof by induction. The claim is obviously true for m = 1.

Assume the claim holds for m—1 < n. If ay1,...,a, € C, not all

zero, such that 0 = ayv1 + -+ - + amVm, then
0=MX1-0=a1\1vi + a2 1vo + - -+ apAivy,

0=A-0=a1\1vi + aodovo + - - + apApv,.
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Theorem
Let A € C™" with different eigenvalues \1,...,\m, m < n. Let

vi,...,Vm be respective eigenvectors for these eigenvalues. Then
Vi,...,Vm are linearly independent.
Proof.

Proof by induction. The claim is obviously true for m = 1.
Assume the claim holds for m—1 < n. If ay1,...,a, € C, not all
zero, such that 0 = ayv1 + -+ - + amVm, then

0=M -0=a1\ivi + aoA\ivo + - - - + apA1 vy,
0=A-0=a1\1vi + aodovo + - - + apApv,.

Substracting these equations from each other, we get

Ozaz()\l—)\2)V2+"‘+Oén()\1—)\n)vn,.

But then ap = -+ = o, = 0, and hence a; = 0, contrary to our

assumption. Hence vy, ..., vy, are linearly independent. []
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Questions?
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