Eigenvalues and Eigenvectors

Let $A \in \mathbb{R}^{n \times n}$ be a matrix.

If $\lambda \in \mathbb{R}$ and $v \in \mathbb{R}^n$, $v \neq 0$, with

$$Av = \lambda v$$
,

then we call

- 1. λ an **eigenvalue** of A,
- 2. v an eigenvector of A,
- 3. and (λ, v) an **eigenpair** of A

Eigen, adjective: "own", "intrinsic". First use in Linear Algebra in 1904 by David Hilbert.

The following are equivalent:

- 1. (λ, v) is an eigenpair of A
- 2. $Av = \lambda v$
- 3. $(A \lambda \text{ Id}) v = 0$
- 4. $v \in \ker (A \lambda \operatorname{Id})$

Conclusion: λ is an eigenvalue of A if $A - \lambda$ ld is a singular matrix. This is the case exactly then if $\det (A - \lambda \operatorname{Id}) = 0$.

The following are equivalent:

- 1. (λ, v) is an eigenpair of A
- 2. $Av = \lambda v$
- 3. $(A \lambda \text{ Id}) v = 0$
- 4. $v \in \ker(A \lambda \operatorname{Id})$

Conclusion: λ is an eigenvalue of A if $A - \lambda \operatorname{Id}$ is a singular matrix. This is the case exactly then if $\det (A - \lambda \operatorname{Id}) = 0$.

The following are equivalent:

- 1. (λ, v) is an eigenpair of A
- 2. $Av = \lambda v$
- 3. $(A \lambda \text{ Id}) v = 0$
- 4. $v \in \ker(A \lambda \operatorname{Id})$

Conclusion: λ is an eigenvalue of A if $A-\lambda$ Id is a singular matrix. This is the case exactly then if $\det (A-\lambda \operatorname{Id})=0$.

The following are equivalent:

- 1. (λ, ν) is an eigenpair of A
- 2. $Av = \lambda v$
- 3. $(A \lambda \text{ Id}) v = 0$
- 4. $v \in \ker(A \lambda \operatorname{Id})$

Conclusion: λ is an eigenvalue of A if $A-\lambda$ Id is a singular matrix. This is the case exactly then if $\det (A-\lambda \operatorname{Id})=0$.

The following are equivalent:

- 1. (λ, v) is an eigenpair of A
- 2. $Av = \lambda v$
- 3. $(A \lambda \text{ Id}) v = 0$
- 4. $v \in \ker (A \lambda \operatorname{Id})$

Conclusion: λ is an eigenvalue of A if $A-\lambda$ Id is a singular matrix. This is the case exactly then if $\det (A-\lambda \operatorname{Id})=0$.

Let $A \in \mathbb{R}^{n \times n}$ be a matrix. The characteristic polynomial of A is

$$p_A(\lambda) := \det (A - \lambda \operatorname{Id}) = \det \begin{pmatrix} a_{11} - \lambda & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} - \lambda & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} - \lambda \end{pmatrix}$$

For $\lambda \in \mathbb{R}$ we have

$$p_A(\lambda) = 0 \iff \det(A - \lambda \operatorname{Id}) = 0.$$

The matrix $A - \lambda$ ld is singular if and only if λ is a root of the characteristic polynomial of A.

Let $A \in \mathbb{R}^{n \times n}$ and let p_A be the characteristic polynomial. By the Fundamental Theorem of Algebra, we can write

$$p_A(\lambda) = (\lambda - \lambda_1) \cdot \cdot \cdot \cdot (\lambda - \lambda_n)$$

where the $\lambda_1, \ldots, \lambda_n \in \mathbb{C}$ are the roots of the polynomial.

(The leading term λ^n has coefficient $(-1)^n$.)

The $\lambda_1, \ldots, \lambda_n$ are not necessarily distinct. The **algebraic** multiplicity $\mu^{\rm a}(A,\lambda)$ is the number how often an eigenvalue appears as a root of the characteristic polynomial.

Let $A \in \mathbb{R}^{n \times n}$ and let p_A be the characteristic polynomial. By the Fundamental Theorem of Algebra, we can write

$$p_A(\lambda) = (\lambda - \lambda_1) \cdot \cdots \cdot (\lambda - \lambda_n)$$

where the $\lambda_1, \ldots, \lambda_n \in \mathbb{C}$ are the roots of the polynomial.

(The leading term λ^n has coefficient $(-1)^n$.)

The $\lambda_1, \ldots, \lambda_n$ are not necessarily distinct. The **algebraic** multiplicity $\mu^a(A, \lambda)$ is the number how often an eigenvalue appears as a root of the characteristic polynomial.

Generally, the roots of a characteristic polynomial may be complex numbers. (Fundamental Theorem of Algebra)

Let $A \in \mathbb{R}^{n \times n}$, $\lambda \in \mathbb{C}$, and $v \in \mathbb{C}^n$, $v \neq 0$.

We call λ an **eigenvalue** of A, we call v an **eigenvector** of A, and (λ, v) an **eigenpair** of A if

$$Av = \lambda v$$
,

- 1. (λ, ν) is an eigenpair of A
- 2. $Av = \lambda v$
- 3. $(A \lambda \text{ Id}) v = 0$
- 4. $v \in \ker (A \lambda \operatorname{Id})$

Let $A \in \mathbb{C}^{n \times n}$, $\lambda \in \mathbb{C}$, and $v \in \mathbb{C}^n$, $v \neq 0$.

We call λ an **eigenvalue** of A, we call v an **eigenvector** of A, and (λ, v) an **eigenpair** of A if

$$Av = \lambda v$$
,

- 1. (λ, ν) is an eigenpair of A
- 2. $Av = \lambda v$
- 3. $(A \lambda \text{ Id}) v = 0$
- 4. $v \in \ker (A \lambda \operatorname{Id})$

$$A = \begin{pmatrix} 2 & -3 & 1 \\ 1 & -2 & 1 \\ 1 & -3 & 2 \end{pmatrix}, \quad p_A(\lambda) = \det \begin{pmatrix} 2 - \lambda & -3 & 1 \\ 1 & -2 - \lambda & 1 \\ 1 & -3 & 2 - \lambda \end{pmatrix},$$

We compute

$$p_A(\lambda) = -\lambda^3 + 2\lambda^2 - \lambda = -\lambda(\lambda - 1)^2$$

The roots of the polynomial p_A are precisely 0 and 1. The eigenvalue 0 has algebraic multiplicity 1 and the eigenvalue 1 has algebraic multiplicity 2:

$$\mu^{a}(A,0) = 1, \quad \mu^{a}(A,1) = 2,$$

7

What are the eigenvectors?

$$\begin{pmatrix} 2 & -3 & 1 \\ 1 & -2 & 1 \\ 1 & -3 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix},$$

$$\begin{pmatrix} 2 & -3 & 1 \\ 1 & -2 & 1 \\ 1 & -3 & 2 \end{pmatrix} \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix},$$

$$\begin{pmatrix} 2 & -3 & 1 \\ 1 & -2 & 1 \\ 1 & -3 & 2 \end{pmatrix} \begin{pmatrix} 3 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 3 \\ 1 \\ 0 \end{pmatrix}.$$

$$A = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}, \quad p_A(\lambda) = \det \begin{pmatrix} \cos(\theta) - \lambda & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) - \lambda \end{pmatrix},$$

We compute

$$p_A(\lambda) = \sin(\theta)^2 + (\cos(\theta) - \lambda)^2$$
$$= \sin(\theta)^2 + \cos(\theta)^2 - 2\lambda\cos(\theta) + \lambda^2$$
$$= \lambda^2 - 2\lambda\cos(\theta) + 1$$

Any root of this polynomial must satisfy

$$\cos(\theta)^2 - 1 = (\lambda - \cos(\theta))^2$$

The left-hand side is negative unless θ is an integer multiple of π , so the eigenvalues are complex unless θ is an integer multiple of π .

$$A = \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{pmatrix}, \quad p_A(\lambda) = \det \begin{pmatrix} \cos(\theta) - \lambda & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) - \lambda \end{pmatrix},$$

We compute

$$p_A(\lambda) = \sin(\theta)^2 + (\cos(\theta) - \lambda)^2$$
$$= \sin(\theta)^2 + \cos(\theta)^2 - 2\lambda\cos(\theta) + \lambda^2$$
$$= \lambda^2 - 2\lambda\cos(\theta) + 1$$

Any root of this polynomial must satisfy

$$-\sin(\theta)^2 = (\lambda - \cos(\theta))^2$$

The left-hand side is negative unless θ is an integer multiple of π , so the eigenvalues are complex unless θ is an integer multiple of π .

The eigenvalues are

$$\lambda_1 = \cos(\theta) + \sin(\theta)\mathbf{i}, \quad \lambda_2 = \cos(\theta) - \sin(\theta)\mathbf{i}.$$

We check that

$$\begin{pmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{pmatrix} \begin{pmatrix} 1 \\ \mathbf{i} \end{pmatrix} = \lambda_1 \begin{pmatrix} 1 \\ \mathbf{i} \end{pmatrix},$$

$$\begin{pmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{pmatrix} \begin{pmatrix} 1 \\ -\mathbf{i} \end{pmatrix} = \lambda_2 \begin{pmatrix} 1 \\ -\mathbf{i} \end{pmatrix}.$$

The characteristic polynomial p_A of $A \in \mathbb{C}^{n \times n}$ is defined as

$$p_A(\lambda) := \det (A - \lambda \operatorname{Id}) = \det \begin{pmatrix} a_{11} - \lambda & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} - \lambda & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} - \lambda \end{pmatrix}$$

The scalar $\lambda \in \mathbb{C}$ is an eigenvalue of A if and only if it is a root of the characteristic polynomial.

Can we use special structures of the matrix to find the eigenvalues?

Let $A \in \mathbb{C}^{n \times n}$ be a triangular matrix.

$$p_{A}(\lambda) = \det (A - \lambda \operatorname{Id}) = \det \begin{pmatrix} a_{11} - \lambda & a_{12} & \dots & a_{1n} \\ 0 & a_{22} - \lambda & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a_{nn} - \lambda \end{pmatrix}$$
$$= (a_{11} - \lambda) \cdot (a_{22} - \lambda) \cdot \dots \cdot (a_{nn} - \lambda)$$

The eigenvalues of a triangular matrix are the diagonal elements:

$$p_A(\lambda) = \prod_{1 \leq i \leq n} (a_{ii} - \lambda).$$

How to find the eigenvectors? If $\lambda \in \mathbb{C}$ is an eigenvalue of $A \in \mathbb{R}^n$, then the eigenvectors for that eigenvalue are the solutions of the homogeneous linear system of equations

$$(A - \lambda \operatorname{Id}) \cdot v = 0.$$

Possible strategy: Bring $A-\lambda\operatorname{Id}$ into reduced row echelon form and determine the nullspace from there.

$$= \operatorname{span} \left\{ \begin{pmatrix} 2 \\ -1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 3 \\ -1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \\ -1 \\ -3 \\ 0 \end{pmatrix} \right\}$$

A matrix $A \in \mathbb{C}^{n \times n}$ is nonsingular if and only if 0 is not an eigenvalue of A.

A matrix $A \in \mathbb{C}^{n \times n}$ is nonsingular if and only if 0 is not an eigenvalue of A.

Proof.

- 1. 0 is an eigenvalue of A
- 2. The matrix A 0 ld has a non-trivial kernel.
- 3. The matrix A has a non-trivial kernel.
- 4. There exists $v \in \mathbb{C}^n$, $v \neq 0$, with Av = 0.
- 5. The matrix A is singular.

A matrix $A \in \mathbb{C}^{n \times n}$ is nonsingular if and only if 0 is not an eigenvalue of A.

Proof.

- 1. 0 is an eigenvalue of A
- 2. The matrix A 0 ld has a non-trivial kernel.
- 3. The matrix A has a non-trivial kernel.
- 4. There exists $v \in \mathbb{C}^n$, $v \neq 0$, with Av = 0.
- 5. The matrix A is singular.

A matrix $A \in \mathbb{C}^{n \times n}$ is nonsingular if and only if 0 is not an eigenvalue of A.

Proof.

- 1. 0 is an eigenvalue of A
- 2. The matrix A 0 ld has a non-trivial kernel.
- 3. The matrix A has a non-trivial kernel.
- 4. There exists $v \in \mathbb{C}^n$, $v \neq 0$, with Av = 0.
- 5. The matrix A is singular.

A matrix $A \in \mathbb{C}^{n \times n}$ is nonsingular if and only if 0 is not an eigenvalue of A.

Proof.

- 1. 0 is an eigenvalue of A
- 2. The matrix A 0 ld has a non-trivial kernel.
- 3. The matrix A has a non-trivial kernel.
- 4. There exists $v \in \mathbb{C}^n$, $v \neq 0$, with Av = 0.
- 5. The matrix A is singular.

A matrix $A \in \mathbb{C}^{n \times n}$ is nonsingular if and only if 0 is not an eigenvalue of A.

Proof.

- 1. 0 is an eigenvalue of A
- 2. The matrix A 0 ld has a non-trivial kernel.
- 3. The matrix A has a non-trivial kernel.
- 4. There exists $v \in \mathbb{C}^n$, $v \neq 0$, with Av = 0.
- 5. The matrix A is singular.

Let $A \in \mathbb{C}^{n \times n}$. Then

$$\det(A) = \prod_{1 \le i \le n} \lambda_i$$

where $\lambda_1, \ldots, \lambda_n$ are the eigenvalues of A (repeated according to algebraic multiplicity).

Let $A \in \mathbb{C}^{n \times n}$. Then

$$\det(A) = \prod_{1 \le i \le n} \lambda_i$$

where $\lambda_1, \ldots, \lambda_n$ are the eigenvalues of A (repeated according to algebraic multiplicity).

Proof.

We have

$$p_A(\lambda) = (-1)^n (\lambda - \lambda_1) \cdot \cdot \cdot \cdot (\lambda - \lambda_n)$$

Then $p_A(0) = \lambda_1 \cdot \cdots \cdot \lambda_n$. But we also have

$$p_A(0) = \det A$$

Hence the claim follows.

Let $A, B, S \in \mathbb{C}^{n \times n}$ with S invertible and $A = S^{-1}BS$. Then

$$p_A(\lambda) = p_B(\lambda).$$

Proof.

We have

$$\det (A - \lambda \operatorname{Id}) = \det (S^{-1}BS - \lambda \operatorname{Id})$$

$$= \det (S^{-1}BS - \lambda S^{-1}\operatorname{Id}S)$$

$$= \det (S^{-1}(B - \lambda \operatorname{Id})S)$$

$$= \det (S^{-1})\det (B - \lambda \operatorname{Id})\det (S)$$

$$= \det (S^{-1})\det (S)\det (B - \lambda \operatorname{Id})$$

- 1. A is invertible.
- 2. Ax = 0 if and only if x = 0.
- 3. Ax = b always has a solution.
- 4. $det(A) \neq 0$.
- 5. 0 is not an eigenvalue of A.
- 6. The row echelon form of A has only non-zero diagonal entries.
- 7. A has an *n*-dimensional row space.
- 8. A has an *n*-dimensional column space.
- 9. A has full rank.

- 1. A is invertible.
- 2. Ax = 0 if and only if x = 0.
- 3. Ax = b always has a solution.
- 4. $det(A) \neq 0$.
- 5. 0 is not an eigenvalue of A.
- 6. The row echelon form of A has only non-zero diagonal entries.
- 7. A has an *n*-dimensional row space.
- 8. A has an *n*-dimensional column space.
- 9. A has full rank.

- 1. A is invertible.
- 2. Ax = 0 if and only if x = 0.
- 3. Ax = b always has a solution.
- 4. $det(A) \neq 0$.
- 5. 0 is not an eigenvalue of A.
- 6. The row echelon form of A has only non-zero diagonal entries.
- 7. A has an *n*-dimensional row space.
- 8. A has an *n*-dimensional column space.
- 9. A has full rank.

- 1. A is invertible.
- 2. Ax = 0 if and only if x = 0.
- 3. Ax = b always has a solution.
- 4. $det(A) \neq 0$.
- 5. 0 is not an eigenvalue of A.
- 6. The row echelon form of A has only non-zero diagonal entries.
- 7. A has an *n*-dimensional row space.
- 8. A has an *n*-dimensional column space.
- 9. A has full rank.

- 1. A is invertible.
- 2. Ax = 0 if and only if x = 0.
- 3. Ax = b always has a solution.
- 4. $det(A) \neq 0$.
- 5. 0 is not an eigenvalue of A.
- 6. The row echelon form of A has only non-zero diagonal entries.
- 7. A has an *n*-dimensional row space.
- 8. A has an *n*-dimensional column space.
- 9. A has full rank.

- 1. A is invertible.
- 2. Ax = 0 if and only if x = 0.
- 3. Ax = b always has a solution.
- 4. $det(A) \neq 0$.
- 5. 0 is not an eigenvalue of A.
- 6. The row echelon form of A has only non-zero diagonal entries.
- 7. A has an *n*-dimensional row space.
- 8. A has an *n*-dimensional column space.
- 9. A has full rank.

- 1. A is invertible.
- 2. Ax = 0 if and only if x = 0.
- 3. Ax = b always has a solution.
- 4. $det(A) \neq 0$.
- 5. 0 is not an eigenvalue of A.
- 6. The row echelon form of A has only non-zero diagonal entries.
- 7. A has an n-dimensional row space.
- 8. A has an *n*-dimensional column space.
- 9. A has full rank.

- 1. A is invertible.
- 2. Ax = 0 if and only if x = 0.
- 3. Ax = b always has a solution.
- 4. $det(A) \neq 0$.
- 5. 0 is not an eigenvalue of A.
- 6. The row echelon form of A has only non-zero diagonal entries.
- 7. A has an *n*-dimensional row space.
- 8. A has an *n*-dimensional column space.
- 9. A has full rank.

- 1. A is invertible.
- 2. Ax = 0 if and only if x = 0.
- 3. Ax = b always has a solution.
- 4. $det(A) \neq 0$.
- 5. 0 is not an eigenvalue of A.
- 6. The row echelon form of A has only non-zero diagonal entries.
- 7. A has an *n*-dimensional row space.
- 8. A has an *n*-dimensional column space.
- 9. A has full rank.

- 1. A is invertible.
- 2. Ax = 0 if and only if x = 0.
- 3. Ax = b always has a solution.
- 4. $det(A) \neq 0$.
- 5. 0 is not an eigenvalue of A.
- 6. The row echelon form of A has only non-zero diagonal entries.
- 7. A has an *n*-dimensional row space.
- 8. A has an *n*-dimensional column space.
- 9. A has full rank.

- 1. A is invertible.
 -
- 10. The rows of A are a basis of \mathbb{C}^n
- 11. The rows of A are a spanning set of \mathbb{C}^n
- 12. The rows of *A* are linearly independent.
- 13. The columns of A are a basis of \mathbb{C}^n
- 14. The columns of A are a spanning set of \mathbb{C}^n
- 15. The columns of A are linearly independent.

Let $A \in \mathbb{C}^{n \times n}$. Then the following are equivalent:

1. A is invertible.

. . . .

- 10. The rows of A are a basis of \mathbb{C}^n
- 11. The rows of A are a spanning set of \mathbb{C}^n
- 12. The rows of *A* are linearly independent.
- 13. The columns of A are a basis of \mathbb{C}^n
- 14. The columns of A are a spanning set of \mathbb{C}^n
- 15. The columns of A are linearly independent.

- 1. A is invertible.
 -
- 10. The rows of A are a basis of \mathbb{C}^n
- 11. The rows of A are a spanning set of \mathbb{C}^n
- 12. The rows of *A* are linearly independent.
- 13. The columns of A are a basis of \mathbb{C}^n
- 14. The columns of A are a spanning set of \mathbb{C}^n
- 15. The columns of A are linearly independent.

- 1. A is invertible.
 -
- 10. The rows of A are a basis of \mathbb{C}^n
- 11. The rows of A are a spanning set of \mathbb{C}^n
- 12. The rows of *A* are linearly independent.
- 13. The columns of A are a basis of \mathbb{C}^n
- 14. The columns of A are a spanning set of \mathbb{C}^n
- 15. The columns of A are linearly independent.

- 1. A is invertible.
 -
- 10. The rows of A are a basis of \mathbb{C}^n
- 11. The rows of A are a spanning set of \mathbb{C}^n
- 12. The rows of *A* are linearly independent.
- 13. The columns of A are a basis of \mathbb{C}^n
- 14. The columns of A are a spanning set of \mathbb{C}^n
- 15. The columns of A are linearly independent.

- 1. A is invertible.
 -
- 10. The rows of A are a basis of \mathbb{C}^n
- 11. The rows of A are a spanning set of \mathbb{C}^n
- 12. The rows of *A* are linearly independent.
- 13. The columns of A are a basis of \mathbb{C}^n
- 14. The columns of A are a spanning set of \mathbb{C}^n
- 15. The columns of A are linearly independent.

Let $A \in \mathbb{C}^{n \times n}$. Then the following are equivalent:

1. A is invertible.

. . . .

- 10. The rows of A are a basis of \mathbb{C}^n
- 11. The rows of A are a spanning set of \mathbb{C}^n
- 12. The rows of *A* are linearly independent.
- 13. The columns of A are a basis of \mathbb{C}^n
- 14. The columns of A are a spanning set of \mathbb{C}^n
- 15. The columns of A are linearly independent.

Theorem

Let $A \in \mathbb{C}^{n \times n}$ with **different** eigenvalues $\lambda_1, \ldots, \lambda_m$, $m \leq n$. Let v_1, \ldots, v_m be respective eigenvectors for these eigenvalues. Then v_1, \ldots, v_m are linearly independent.

Proof.

Proof by induction. The claim is obviously true for m = 1.

Theorem

Let $A \in \mathbb{C}^{n \times n}$ with **different** eigenvalues $\lambda_1, \ldots, \lambda_m$, $m \leq n$. Let v_1, \ldots, v_m be respective eigenvectors for these eigenvalues. Then v_1, \ldots, v_m are linearly independent.

Proof.

Proof by induction. The claim is obviously true for m=1. Assume the claim holds for m-1 < n. If $\alpha_1, \ldots, \alpha_m \in \mathbb{C}$, not all zero, such that $0 = \alpha_1 v_1 + \cdots + \alpha_m v_m$, then

$$0 = \lambda_1 \cdot 0 = \alpha_1 \lambda_1 v_1 + \alpha_2 \lambda_1 v_2 + \dots + \alpha_n \lambda_1 v_n,$$

$$0 = A \cdot 0 = \alpha_1 \lambda_1 v_1 + \alpha_2 \lambda_2 v_2 + \dots + \alpha_n \lambda_n v_n.$$

Theorem

Let $A \in \mathbb{C}^{n \times n}$ with **different** eigenvalues $\lambda_1, \ldots, \lambda_m$, $m \leq n$. Let v_1, \ldots, v_m be respective eigenvectors for these eigenvalues. Then v_1, \ldots, v_m are linearly independent.

Proof.

Proof by induction. The claim is obviously true for m=1. Assume the claim holds for m-1 < n. If $\alpha_1, \ldots, \alpha_m \in \mathbb{C}$, not all zero, such that $0 = \alpha_1 v_1 + \cdots + \alpha_m v_m$, then

$$0 = \lambda_1 \cdot 0 = \alpha_1 \lambda_1 v_1 + \alpha_2 \lambda_1 v_2 + \dots + \alpha_n \lambda_1 v_n,$$

$$0 = A \cdot 0 = \alpha_1 \lambda_1 v_1 + \alpha_2 \lambda_2 v_2 + \dots + \alpha_n \lambda_n v_n.$$

Substracting these equations from each other, we get

$$0 = \alpha_2 (\lambda_1 - \lambda_2) v_2 + \cdots + \alpha_n (\lambda_1 - \lambda_n) v_n,.$$

But then $\alpha_2 = \cdots = \alpha_n = 0$, and hence $\alpha_1 = 0$, contrary to our assumption. Hence v_1, \ldots, v_m are linearly independent.

