
Eigenvalues and Eigenvectors



Let A ∈ Rn×n be a matrix.

If λ ∈ R and v ∈ Rn, v 6= 0, with

Av = λv ,

then we call

1. λ an eigenvalue of A,

2. v an eigenvector of A,

3. and (λ, v) an eigenpair of A

Eigen, adjective: “own”, “intrinsic”.

First use in Linear Algebra in 1904 by David Hilbert.
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Let λ ∈ R and v ∈ Rn with v 6= 0.

The following are equivalent:

1. (λ, v) is an eigenpair of A

2. Av = λv

3. (A− λ Id) v = 0

4. v ∈ ker (A− λ Id)

Conclusion: λ is an eigenvalue of A if A− λ Id is a singular matrix.

This is the case exactly then if det (A− λ Id) = 0.
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Let A ∈ Rn×n be a matrix. The characteristic polynomial of A is

pA(λ) := det (A− λ Id) = det


a11 − λ a12 . . . a1n

a21 a22 − λ . . . a2n
...

...
. . .

...

an1 an2 . . . ann − λ


For λ ∈ R we have

pA(λ) = 0 ⇐⇒ det(A− λ Id) = 0.

The matrix A− λ Id is singular if and only if λ is a root of the

characteristic polynomial of A.
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Let A ∈ Rn×n and let pA be the characteristic polynomial. By the

Fundamental Theorem of Algebra, we can write

pA(λ) = (λ− λ1) · · · · · (λ− λn)

where the λ1, . . . , λn ∈ C are the roots of the polynomial.

(The leading term λn has coefficient (−1)n.)

The λ1, . . . , λn are not necessarily distinct. The algebraic

multiplicity µa(A, λ) is the number how often an eigenvalue

appears as a root of the characteristic polynomial.

Generally, the roots of a characteristic polynomial may be complex

numbers. (Fundamental Theorem of Algebra)
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Example

A =

2 −3 1

1 −2 1

1 −3 2

 , pA(λ) = det

2− λ −3 1

1 −2− λ 1

1 −3 2− λ

 ,

We compute

pA(λ) = −λ3 + 2λ2 − λ = −λ(λ− 1)2

The roots of the polynomial pA are precisely 0 and 1. The

eigenvalue 0 has algebraic multiplicity 1 and the eigenvalue 1 has

algebraic multiplicity 2:

µa(A, 0) = 1, µa(A, 1) = 2,
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Example

What are the eigenvectors?2 −3 1

1 −2 1

1 −3 2


1

1

1

 =

0

0

0

 ,

2 −3 1

1 −2 1

1 −3 2


−1

0

1

 =

−1

0

1

 ,

2 −3 1

1 −2 1

1 −3 2


3

1

0

 =

3

1

0

 .
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Example

A =

(
cos(θ) − sin(θ)

sin(θ) cos(θ)

)
, pA(λ) = det

(
cos(θ)− λ − sin(θ)

sin(θ) cos(θ)− λ

)
,

We compute

pA(λ) = sin(θ)2 + (cos(θ)− λ)2

= sin(θ)2 + cos(θ)2 − 2λ cos(θ) + λ2

= λ2 − 2λ cos(θ) + 1

Any root of this polynomial must satisfy

cos(θ)2 − 1 = (λ− cos(θ))2

The left-hand side is negative unless θ is an integer multiple of π,

so the eigenvalues are complex unless θ is an integer multiple of π.
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Example

A =

(
cos(θ) sin(θ)

− sin(θ) cos(θ)

)
, pA(λ) = det

(
cos(θ)− λ sin(θ)

− sin(θ) cos(θ)− λ

)
,

We compute

pA(λ) = sin(θ)2 + (cos(θ)− λ)2

= sin(θ)2 + cos(θ)2 − 2λ cos(θ) + λ2

= λ2 − 2λ cos(θ) + 1

Any root of this polynomial must satisfy

− sin(θ)2 = (λ− cos(θ))2

The left-hand side is negative unless θ is an integer multiple of π,

so the eigenvalues are complex unless θ is an integer multiple of π.
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Example

The eigenvalues are

λ1 = cos(θ) + sin(θ)i, λ2 = cos(θ)− sin(θ)i.

We check that(
cos(θ) sin(θ)

− sin(θ) cos(θ)

)(
1

i

)
= λ1

(
1

i

)
,(

cos(θ) sin(θ)

− sin(θ) cos(θ)

)(
1

−i

)
= λ2

(
1

−i

)
.
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The characteristic polynomial pA of A ∈ Cn×n is defined as

pA(λ) := det (A− λ Id) = det


a11 − λ a12 . . . a1n

a21 a22 − λ . . . a2n
...

...
. . .

...

an1 an2 . . . ann − λ


The scalar λ ∈ C is an eigenvalue of A if and only if it is a root of

the characteristic polynomial.

Can we use special structures of the matrix to find the eigenvalues?

12



Example

Let A ∈ Cn×n be a triangular matrix.

pA(λ) = det (A− λ Id) = det


a11 − λ a12 . . . a1n

0 a22 − λ . . . a2n
...

...
. . .

...

0 0 . . . ann − λ


= (a11 − λ) · (a22 − λ) · · · · · (ann − λ)

The eigenvalues of a triangular matrix are the diagonal elements:

pA(λ) =
∏

1≤i≤n

(aii − λ) .
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How to find the eigenvectors? If λ ∈ C is an eigenvalue of A ∈ Rn,

then the eigenvectors for that eigenvalue are the solutions of the

homogeneous linear system of equations

(A− λ Id) · v = 0.

Possible strategy: Bring A− λ Id into reduced row echelon form

and determine the nullspace from there.
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Example

ker



1 2 0 0 0 0

0 0 1 3 −1 0

0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


=

x ∈ R6

∣∣∣∣∣∣∣
x1 + 2x2 = 0

x3 + 3x4 − x5 = 0

x6 = 0



= span





2

−1

0

0

0

0


,



0

0

3

−1

0

0


,



0

0

0

−1

−3

0




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Theorem

A matrix A ∈ Cn×n is nonsingular if and only if 0 is not an

eigenvalue of A.

Proof.

The following are equivalent:

1. 0 is an eigenvalue of A

2. The matrix A− 0 Id has a non-trivial kernel.

3. The matrix A has a non-trivial kernel.

4. There exists v ∈ Cn, v 6= 0, with Av = 0.

5. The matrix A is singular.
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Theorem

Let A ∈ Cn×n. Then

det(A) =
∏

1≤i≤n

λi

where λ1, . . . , λn are the eigenvalues of A (repeated according to

algebraic multiplicity).

Proof.

We have

pA(λ) = (−1)n (λ− λ1) · · · · · (λ− λn)

Then pA(0) = λ1 · · · · · λn. But we also have

pA(0) = detA

Hence the claim follows.
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Theorem

Let A,B, S ∈ Cn×n with S invertible and A = S−1BS. Then

pA(λ) = pB(λ).

Proof.

We have

det (A− λ Id) = det
(
S−1BS − λ Id

)
= det

(
S−1BS − λS−1 IdS

)
= det

(
S−1 (B − λ Id)S

)
= det

(
S−1

)
det (B − λ Id) det (S)

= det
(
S−1

)
det (S) det (B − λ Id)
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Important Slide

Let A ∈ Cn×n. Then the following are equivalent:

1. A is invertible.

2. Ax = 0 if and only if x = 0.

3. Ax = b always has a solution.

4. det(A) 6= 0.

5. 0 is not an eigenvalue of A.

6. The row echelon form of A has only non-zero diagonal entries.

7. A has an n-dimensional row space.

8. A has an n-dimensional column space.

9. A has full rank.
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Important Slide, contd.

Let A ∈ Cn×n. Then the following are equivalent:

1. A is invertible.

....

10. The rows of A are a basis of Cn

11. The rows of A are a spanning set of Cn

12. The rows of A are linearly independent.

13. The columns of A are a basis of Cn

14. The columns of A are a spanning set of Cn

15. The columns of A are linearly independent.
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Theorem

Let A ∈ Cn×n with different eigenvalues λ1, . . . , λm, m ≤ n. Let

v1, . . . , vm be respective eigenvectors for these eigenvalues. Then

v1, . . . , vm are linearly independent.

Proof.

Proof by induction. The claim is obviously true for m = 1.

Assume the claim holds for m − 1 < n. If α1, . . . , αm ∈ C, not all

zero, such that 0 = α1v1 + · · ·+ αmvm, then

0 = λ1 · 0 = α1λ1v1 + α2λ1v2 + · · ·+ αnλ1vn,

0 = A · 0 = α1λ1v1 + α2λ2v2 + · · ·+ αnλnvn.

Substracting these equations from each other, we get

0 = α2 (λ1 − λ2) v2 + · · ·+ αn (λ1 − λn) vn, .

But then α2 = · · · = αn = 0, and hence α1 = 0, contrary to our

assumption. Hence v1, . . . , vm are linearly independent.
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Questions?
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