MATH 109 - HOMEWORK 6

Due Friday, February 23rd. Handwritten submissions only. The exercises in this homework are worth 16 points.

Problem 1

Prove using the principle of induction:

$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}, \quad \sum_{k=1}^{n} k^3 = \frac{n^2(n+1)^2}{4}.$$

Problem 2

Let $n \in \mathbb{N}$ with $n \geq 4$. Prove that n! is divisible by a square number $s \in \mathbb{N}$ with $\sqrt{s} \geq \lfloor n/2 \rfloor$.

Problem 3

Let $p \in \mathbb{N}_0$ and $n \in \mathbb{N}$. Prove Pascal's identity:

$$\sum_{l=1}^{p+1} \binom{p+1}{l} S_{n,p+1-l} = (n+1)^{p+1} - 1, \quad \text{where} \quad S_{n,p} := \sum_{k=1}^{n} k^{p}.$$

Use this formula to compute $S_{n,4}$ for arbitrary $n \in \mathbb{N}$.

Problem 4

Find the mistake in the following reasoning:

Claim: All cars have the same color.

We use the principle of induction: we show that for all $n \in \mathbb{N}$ within every set of n cars all cars have the same color.

First, if n = 1, then certainly every set containing 1 car has all cars with the same color.

Second, suppose the for all sets of n cars we have the cars in that set having the same color. Consider now a set $A = \{a_1, \ldots, a_n, a_{n+1}\}$ of n+1 cars, and define

$$A_1 = \{a_2, \dots, a_n, a_{n+1}\}, \quad A_{n+1} = \{a_1, \dots, a_n\}.$$

By the induction assumption, we have that all cars in A_1 and all cars in A_{n+1} have the same color. Hence all cars in $A = A_1 \cup A_{n+1}$ have the same color.

Problem 5

Prove the following: for all $n \in \mathbb{N}$ with $n \geq 12$ there exist $a, b \in \mathbb{N}_0$ such that n = 4a + 5b.

Problem 6

Let $f: \mathbb{R} \to \mathbb{R}$ be a function. Suppose that f(x) = f(x+1) for all $x \in \mathbb{R}$. Prove that for all $x \in \mathbb{R}$ and all $m \in \mathbb{N}$ we have f(x) = f(x+m).

Problem 7

For any $x \in \mathbb{R}$ we define repeated exponentiation as follows:

$$\exp^{0}(x) = x, \quad \exp^{n+1}(x) = \exp\left(\exp^{n}(x)\right)$$

Prove the following statement:

$$\forall x \in \mathbb{R} : \forall m, n \in \mathbb{N}_0 : (x > 1 \land m < n) \to (\exp^m(x) < \exp^n(x))$$

1

In other words, for all $x \in \mathbb{R}$ with x > 1 and $m, n \in \mathbb{N}_0$ with m < n we have $\exp^m(x) < \exp^n(x)$.