
MATH 109 – HOMEWORK 8

Due Friday, March 8st. Handwritten submissions only.
The exercises in this homework are worth 16 points.

Problem 1
Consider the two functions

f : R \ {1, 2, 3} → R, x 7→ 5x3 − 8x2 − 27x + 18

(x− 1)(x− 2)(x− 3)
,

g : R \ {0, 1, 2} → R, x 7→ 5x3 + 7x2 − 6x

x(x− 1)(x− 2)
,

Find the largest set A ⊆ R such that A ⊆ dom(f) and A ⊆ dom(g) and f|A = g|A.

Solution 1
Consider the set A = dom(f) ∩ dom(g). We first show that f|A = g|A.

Let x ∈ A. Then

5x3 + 7x2 − 6x = x
(
5x2 + 7x− 6

)
, 5x3 − 8x2 − 27x + 18 = (x− 3)

(
5x2 + 7x− 6

)
.

So we have

f(x) =
5x3 − 8x2 − 27x + 18

(x− 1)(x− 2)(x− 3)
=

5x2 + 7x− 6

(x− 1)(x− 2)
,

g(x) =
5x3 + 7x2 − 6x

x(x− 1)(x− 2)
=

5x2 + 7x− 6

(x− 1)(x− 2)

Hence g(x) = f(x). So f|A = g|A holds.
Also we have that A is the largest set contained in dom(f)∩dom(g) such that f|A = g|A. Indeed,

A = dom(f) ∩ dom(g), so there cannot be a larger set with that property.

Problem 2
Let X be a set. Consider the following relation ∼ on the power set P(X):

∀A,B ∈ P(X) : A ∼ B ↔ A ∩B 6= ∅

Is ∼ reflexive, symmetric, or transitive? Either prove or give a counterexample.

Solution 2
Let X be a set and let ∼ as in the statement of the problem.

We see that R is not reflexive. Indeed, for any A ∈ P(X) we have A ∩ A = A. In particular,
∅ ∩ ∅ = ∅. Hence ∅ ∼ ∅ cannot be true. So X is not reflexive.

We see that R is symmetric. To see that, assume that A,B ∈ P(X) with A ∼ B. Then we have
A ∩B 6= ∅, and hence B ∩A 6= ∅, so B ∼ A follows. By definition, X is symmetric.

Finally, we find that R is generally not transitive. For example, consider X = {0, 1, 2, 3} and
the three sets A = {0, 1}, B = {1, 2}, and C = {2, 3}. We then have A ∩ B 6= ∅ and B ∩ C 6= ∅
whereas A ∩ C = ∅. In other words, A ∼ B and B ∼ C but not A ∼ C. Hence R is generally not
transitive.

Remark: One can show that R is transitive if X is empty or only has one element. If X has two
elements, then R is not transitive either. Can you give an example?

Problem 3
Let R be a binary relation over a set X that is both symmetric and antisymmetric. Prove that R
is a subset of the equality relation over X.
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Solution 3
Assume that R is a symmetric antisymmetric bindary relation over a set X. We need to show that
R is a subset of the equality relation,

R ⊆ { (a, b) ∈ X ×X | a = b } .

In other words, we need to show that for all a, b ∈ X we have a = b if a ∼ b.
To show this, suppose that a, b ∈ X with a ∼ b. By symmetry, b ∼ a follows. By antisymmetry,

a ∼ b and b ∼ a imply a = b. This had to be shown.

Problem 4
We introduce the following relation R on the rational numbers Q. For x, y ∈ Q we write x ∼R y if
there exist natural numbers m,n ∈ N such that xm = yn. Show that R is an equivalence relation.

Solution 4
To show that R is an equivalence relation we need to verify that R is reflexive, symmetric, and
transitive. We check these properties one by one.

First, to see that R is reflexive we need to show that for arbitrary a ∈ Q we have a ∼R a. This
just means that for all a ∈ Q there exists m,n ∈ N such that am = an.

Let us assume that a ∈ Q. Then we can pick m = n = 1 ∈ N and find am = a = an. Hence
a ∼R a holds.

Second, to see R is symmetric we need to show that for arbitrary a, b ∈ Q we have that a ∼R b
implies b ∼R a.

So let assume that a, b ∈ Q with a ∼R b. This means that there exist m,n ∈ N such that
am = bn. But that obviously (after renaming variables) is equivalent to saying that there exist
m,n ∈ N such that bm = an. So b ∼R a does hold indeed.

Finally, we show that R is transitive. We need to prove that for all a, b, c ∈ Q with a ∼R b and
b ∼R c we have a ∼R c.

So let us assume that a, b, c ∈ Q with a ∼R b and b ∼R c. This means there exist m,n ∈ N with
am = bn and there exist p, q ∈ N with bp = cq. But in that case we have

amp = bnp ∧ bnp = cnq.

In particular, amp = cnq, which shows that a ∼R c.
The proof is complete.

Problem 5
Consider the following relation on the real numbers: for all x, y ∈ R we write

x ∼ y :⇐⇒ |x| ≤ |y|.

Show that ∼ is reflexive and transitive, but not antisymmetric.

Solution 5
First, we show that ∼ is reflexive. For any x ∈ R we have x ∼ x if and only if |x| ≤ |x|. But the
latter is obviously true, so x ∼ x holds.

Second, we show that ∼ is transitive. Indeed, assume that x, y, z ∈ R such that x ∼ y and y ∼ z.
This means that |x| ≤ |y| and |y| ≤ |z|, from which conclude that |x| ≤ |z|. But that just shows
x ∼ z. Since the x, y, z have been arbitrary, we conclude that ∼ is transitive.

We want to show that ∼ is not antisymmetric. Recall that a relation ∼ being antisymmetric
would mean that for all a, b ∈ R we have a ∼ b and b ∼ a implies a = b. Hence ∼ not being
antisymmetric means that there exist a, b ∈ R such that we have a ∼ b and b ∼ a but a 6= b. To
show that such a, b ∈ R exist it is sufficient to give a counterexample. Such is given by choosing
a = 1 and b = −1. Indeed, we observe that |a| ≤ |b| and |b| ≤ |a| holds with that choice of a and b
whereas a 6= b. Hence ∼ is not antisymmetric.

Remark: We have defined the relation ∼ over R in terms of the partial ≤ on the R+
0 and the

used the reflexivity and transitivity of that partial order.
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Problem 6
Let X be a set. Under which conditions is the empty set ∅ a partial order over X?

Solution 6
Let X be a set and let R = ∅ be the empty relation. Assume that R is a partial order. Since R is
a partial order, it is a reflexive relation, which means that

∀a ∈ X : (a, a) ∈ R.

If X = ∅, then this statement is vacuously true.
We show by contradiction that X 6= ∅ is not possible. Indeed, suppose that X 6= ∅ and let a ∈ X.

Then reflexivity of R implies (a, a) ∈ R. But this contradicts X being non-empty.
So X = ∅ must hold.

Problem 7 (Ungraded)
Consider the set R equipped with the canonical order ≤. Let∞ and −∞ be two symbols and define

R := {−∞,∞} ∪ R.

We define a relation R on R as follows:

∀x, y ∈ R : ( x ∼R y :⇐⇒ x ≤ y ) ,

∀x ∈ R : (−∞ ≤ x) ∧ (x ≤ ∞) ,

−∞ ≤ −∞, −∞ ≤ ∞, ∞ ≤∞.

Show that R is a partial order over R.

Solution 7
We verify the three properties that define a partial order: reflexivity, antisymmetry, and transitivity.

First we show reflexivity. Let a ∈ R. If a ∈ R, then a ≤ a is already given by the reflexivity of
the partial order over R. If a ∈ {−∞,∞}, then a ≤ a follows from −∞ ≤ −∞ or ∞ ≤ ∞. We
conclude that reflexivity holds.

Second we show antisymmetry. Let a, b ∈ R such that a ≤ b and b ≤ a. We want to prove that
a = b.

If a, b ∈ R, then a = b follows from the antisymmetry of the partial order over R. If a = −∞,
then the only choice for b is −∞, in which case a = b = −∞ is true. Similarly, if a = ∞, then
the only choice for b is ∞, in which case a = b = ∞ is true. For all other choices of a and b the
condition a ≤ b ∧ b ≤ a does not occur.

Third we show transitivity. Let a, b, c ∈ R with a ≤ b and b ≤ c. We want to prove that a ≤ c.
We observe that for all a ∈ R we have −∞ ≤ a and a ≤ ∞. Moreover, we have a = −∞ if

a ≤ −∞ and we have a =∞ if ∞ ≤ a.
So, if a = −∞, then a ≤ c holds. Similarly, if c = ∞, then a ≤ c holds. If a = ∞, then b = ∞

follows, and from there we get c = ∞. If c = −∞, then b = −∞ follows, and from there we get
a = −∞.

It remains to consider the case that a, c /∈ {−∞,∞}, that is, a, c ∈ R. We then must have b ∈ R,
and so a ≤ c follows again by the transitivity of the partial order over R.

The proof is complete.
Remark: The last part, transitivity, requires the most effort. Can you think of different (case

distinctions) for that part of the proof.

Problem 8 (Ungraded)
Let R denote the canonical order of set N8

0 = {0, 1, . . . , 7, 8}. Suppose that S is another partial
order over N8

0 such that R ⊆ S and (8, 0) ∈ S. Show that S = N8
0 ×N8

0 .
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Solution 8
We want to show that S = N8

0 × N8
0 . That means, for all a, b ∈ N8

0 we have a ∼S b. So let us
assume that we have picked arbitrary a, b ∈ N8

0 .
If a ∼R b (i.e., a ≤ b), then we have a ∼S b already because R ⊆ S.
If instead ¬(a ∼R b), then we have b ≤ a. However, we have a ≤ 8, which means a ∼R 8. Since

R ⊆ S, this implies immediately a ∼S 8. Moreover, we have 0 ≤ b, which means 0 ∼R a. Since
R ⊆ S, this implies immediately 0 ∼S a. Now recall that 8 ∼S 0. Since we assume that S is a
partial order, we use transitivity to find

(a ∼S 8) ∧ (8 ∼S 0) ∧ (0 ∼S b) =⇒ (a ∼S b) .

This had to be shown.
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