Exercise 1
Compute the inverse the unit lower triangular matrix
\[L = \begin{pmatrix}
1 & 0 & 0 & 0 \\
-4 & 1 & 0 & 0 \\
-2 & 4 & 1 & 0 \\
0 & 3 & -1 & 1
\end{pmatrix}. \]

Solution 1
The inverse is
\[L^{-1} = \begin{pmatrix}
1 & 0 & 0 & 0 \\
4 & 1 & 0 & 0 \\
-14 & -4 & 1 & 0 \\
-26 & -7 & 1 & 1
\end{pmatrix}. \]

Exercise 2
Describe an algorithm (in pseudocode) that computes the matrix-vector product \(y = Ax \) of an \(n \times n \) matrix \(A \) and an \(n \)-dimensional vector \(x \).

Solution 2
• FOR \(i = 1, \ldots, n \) DO
 • \(y_i = 0 \)
 • FOR \(j = 1, \ldots, n \) DO \(y_i = y_i + a_{ij} x_j \) END FOR
 • END FOR

Exercise 3
Describe an in place algorithm (in pseudocode) that computes the matrix-vector product \(Lx \) of a lower triangular \(n \times n \) matrix \(L \) and an \(n \)-dimensional vector \(x \) and writes the result into \(x \). Here, in place means the algorithm uses an amount of auxiliary memory that does not depend on the matrix dimension.

Solution 3
• FOR \(j = n, \ldots, 1 \) DO
 • \(x_j = a_{jj} x_j \)
 • FOR \(k = 1, \ldots, j-1 \) DO \(x_j = x_j - a_{jk} x_k \) END FOR
 • END FOR

Exercise 4
Suppose that \(A \) is an invertible \(n \times n \) matrix and let \(b^{(1)}, b^{(2)}, \ldots, b^{(M)} \) be \(M \) vectors of dimension \(n \). We want to solve the linear systems of equations
\[Ax^{(1)} = b^{(1)}, \quad Ax^{(2)} = b^{(2)}, \quad \ldots, \quad Ax^{(M)} = b^{(M)}. \]

1. How many divisions and multiplications are performed if Gaussian elimination is used for all \(M \) systems?
(2) How many divisions and multiplications are performed if first the LU decomposition of A is calculated and then the systems are solved with successive triangular substitutions?

(3) For which M and n will which approach use less divisions and multiplications?

Solution 4
For the sake of brevity, we introduce the notation

$$A_n = \sum_{k=1}^{n-1} k, \quad S_n = \sum_{k=1}^{n-1} k^2.$$

We count the operations as follows.

(1) Using Gaussian elimination uses in its first phase $M \cdot A_n$ divisions and $M \cdot S_n$ multiplications on the matrix entries, and further $M \cdot A_n$ multiplications on the right-hand side. In the backsubstitution phase, it uses further $n \cdot M$ divisions and $M \cdot A_n$ multiplications. Lumping division and multiplication together, we get a total count of

$$X_n = M \cdot n + 3M \cdot A_n + M \cdot S_n.$$

(2) The decomposition phase of the LU decomposition uses A_n divisions and S_n multiplications. The substitution phase of the LU decomposition uses Mn divisions (for the backward substitution) and $2M \cdot A_n$ multiplications. Together we get a count of

$$Y_n = Mn + (2M + 1)A_n + S_n.$$

(3) The question is for which $n \geq 1$ the difference

$$\Delta_n = X_n - Y_n$$

$$= Mn + 3MA_n + MS_n - Mn - (2M + 1)A_n - S_n$$

$$= (M - 1)S_n + (M - 1)A_n$$

is positive. This is the case for $M \geq 2$ and $n \geq 2$.

Exercise 5
Consider a unit lower triangular matrix L a upper triangular matrix U. Suppose that L and U are saved in the memory of a matrix A.

$$L = \begin{pmatrix}
1 & 0 & \ldots & 0 \\
l_{21} & 1 & \ldots & 0 \\
\vdots & \ddots & \ddots & \vdots \\
l_{n1} & l_{n2} & \ldots & 1
\end{pmatrix}, \quad U = \begin{pmatrix}
u_{11} & u_{12} & \ldots & u_{1n} \\
u_{21} & u_{22} & \ldots & u_{2n} \\
\vdots & \ddots & \ddots & \vdots \\
u_{n1} & l_{n2} & \ldots & u_{nn}
\end{pmatrix}, \quad A = \begin{pmatrix}
u_{11} & u_{12} & \ldots & u_{1n} \\
l_{21} & u_{22} & \ldots & u_{2n} \\
\vdots & \ddots & \ddots & \vdots \\
l_{n1} & l_{n2} & \ldots & u_{nn}
\end{pmatrix}. $$

Describe an in place algorithm (in pseudocode) that computes the matrix-matrix product LU and writes the result into the memory of A. Here, in place means the algorithm uses an amount of auxiliary memory that does not depend on the matrix dimension.

Solution 5
• FOR $i = n, \ldots, 1$ DO
 • FOR $j = n, \ldots, 1$ DO
 • $F = 0$
 • FOR $k = 1, \ldots, \min(i, j)$ DO $F = F + a_{ik}a_{kj}$ END FOR
 • $a_{ij} = F$
 • END FOR
 • END FOR
Exercise 6
Consider the matrix \(A \) and the vector \(b \) given by
\[
A = \begin{pmatrix} 2 & 8 & 1 \\ 4 & 4 & -1 \\ -1 & 2 & 12 \end{pmatrix}, \quad b = \begin{pmatrix} 32 \\ 16 \\ 52 \end{pmatrix}.
\]

(1) Compute the LU decomposition of \(A \).
(2) Solve the linear system \(Ax = b \) by successive substitution. Double check your result.
(3) Compute the inverse of \(A^{-1} \). Double check your result.

Solution 6
The LU decomposition of \(A \) is given by the matrices
\[
L = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -0.5 & -0.5 & 1 \end{pmatrix}, \quad U = \begin{pmatrix} 2 & 8 & 1 \\ 0 & -12 & -3 \\ 0 & 0 & -3 \end{pmatrix}.
\]

Successive substitution gives the following values:
\[
y = \begin{pmatrix} 32 \\ -48 \\ 44 \end{pmatrix}, \quad x = \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix}
\]

The inverse matrix is given by
\[
A^{-1} = \begin{pmatrix} -25/132 & 47/132 & 1/22 \\ 47/264 & -25/264 & -1/44 \\ -1/22 & 1/22 & 1/11 \end{pmatrix}.
\]

Exercise 7
Gaussian elimination (or LU decomposition) is a possible method to compute the determinant of a matrix.

(1) Suppose that \(LU = A \) is the LU decomposition of an \(n \times n \) matrix \(A \). Prove that \(\det(A) = \det(U) \).
(2) How many multiplications and divisions are needed to compute \(\det(A) \) using the Laplace expansion?
(3) For which value of \(n \) does the Laplace expansion use more multiplications and divisions than the method using Gaussian elimination?

Solution 7
First, the identity \(\det(A) = \det(U) \) follows from the product formula for the determinant and the fact that \(\det(L) = 1 \).

The Laplace expansion ranges over \(n! \) different permutations, and for each permutation, we compute \(n-1 \) different products. There are no divisions, hence the operation count is \((n-1)n! \).

Computing the \(U \) component in the LU decomposition of the matrix \(A \) requires \(n(n-1)/2 \) divisions and \(\sum_{k=1}^{n-1} k^2 = n(n-1)(2n-1)/6 \) multiplications. Furthermore, computing the determinant eventually needs \(n-1 \) additional multiplications. Using equivalence transformations, we get
\[
\frac{1}{6}n(n-1)(2n-1) + \frac{1}{2}n(n-1) + (n-1) < (n!)n-1
\]
\[
\equiv \frac{n}{6}(2n-1) + \frac{n}{2} + 1 < (n!)
\]
\[
\equiv \frac{1}{6}(2n^2 - n + 3n + 6) < (n!)
\]
\[
\equiv \frac{1}{6}(2n^2 + 2n + 6) < (n!).
\]

This inequality holds certainly for, say, \(n \geq 5 \). Manually checking shows that it holds for \(n \geq 3 \).
Exercise 8
Solve the following two problems.
(a) Let A be a matrix for which the LU decomposition exists without pivoting. Show that there exists a unique lower triangular matrix L and a unique unit upper triangular matrix U such that $A = LU$.
(b) Suppose that L, L' are invertible lower triangular matrices and U, U' are invertible upper triangular matrices such that $LU = L'U'$. What is the relation between L and L' and between U and U', respectively?

Solution 8
(a) For the first part of the exercise, we recall that the LU decomposition $A = LU$ with L having unit diagonal entries is unique. There exists a unique diagonal matrix D and a unique unit upper triangular matrix R such that $U = DR$. We define $L' = LD$, which shows the existence of the decomposition $A = L'R$ as in the statement of the exercise. The uniqueness of the decomposition can be shown as in the lecture.

(b) For the second part of the exercise, let us define diagonal matrices $D_R, D'_{R'}$ and unit upper triangular matrices R, R' such that $U = D R$ and $U' = D' R'$. Furthermore, we define diagonal matrices D_L, D'_L and unit upper triangular matrices B, B' such that $L = B D_L$ and $L' = B' D'_L$.

We then have $A = B D_L D_R R = B' D'_L D'_{R'} R'$. The uniqueness of the LU decomposition with unit lower triangular matrix implies that $B = B'$ and $D_L D_R R = D'_L D'_{R'} R'$. From the latter we get $D_L D_R = D'_L D'_{R'}$ and $R = R'$.

Consequently, $L = B D_L = B' D'_L = L' (D')^{-1}_L D_L$ and $U = U_R R = D_R R' = D_R (D')^{-1}_R U'$. Finally, $(D')^{-1}_L D_L D_R (D')^{-1}_R = (D')^{-1}_L D'_L D'_{R'} (D')^{-1}_R = I$.

Our overall conclusion is that there exists a diagonal matrix T such that $L = L'T$ and $U = T^{-1}U'$.

Remark 1
Counting the number of floating-point operations gives a rough idea how much run-time an algorithm will need. However, observed run-times are influenced by a multitude of factors in the software and the hardware.