Exercise 1 (Sparse Linear Algebra and Richardson Iteration)
When we save every entry of an \(n \times n \) matrix \(A \) explicitly, then we use \(n^2 \) entries in memory. If the vast majority of entries in \(A \) is zero, then more memory-efficient formats are possible.

The idea is to describe the non-zero structure of a matrix and its entries. Describing the non-zero structure structure explicitly incurs a little overhead, but the savings in terms of memory are dramatic if the number of non-zero entries is much less than \(n^2 \). Furthermore, knowing the non-zero structure of a matrix can dramatically speed up an algorithm.

In the following exposition and exercises we use zero-based indexing for arrays, as in C, Java, or Python, but unlike Fortran or Matlab, which use one-based indexing. However, you can translate the idea into any indexing-convention of your choice.

(1) The coordinate format saves a matrix in the following form: two arrays of indices \(R \) and \(C \) and an array of floating-point numbers \(V \), each of length \(\ell \), where \(\ell \) is the number of non-zero entries of \(A \). For the \(i \)-th entry, the matrix has a non-zero value \(V[\ell] \) in the entry at row \(R[i] \) and column \(C[i] \).

For example, the matrix

\[
A = \begin{pmatrix}
1 & 2 & 3 \\
4 & 5 & \\
8 & 9 & 6 & 7 \\
10 \\
\end{pmatrix}
\]

would be described in a C data structure as

\[
\text{int } R[10] = \{ 0, 0, 0, 1, 1, 2, 2, 3, 3, 5 \}; \\
\text{int } C[10] = \{ 0, 1, 2, 1, 2, 4, 5, 0, 2, 4 \}; \\
\text{int } V[10] = \{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 \};
\]

Write a method that on input \(\ell \), \(R \), \(C \), \(V \), and \(x \in \mathbb{R}^n \) outputs the product \(Ax \). You may use the above matrix as an example.

(2) We generate a class of matrices in coordinate format that appears in practical applications. Let \(m \in \mathbb{N} \) and \(n = m^2 \). We define a matrix \(A \) as follows. The diagonal entries of \(A \) have the value \(4n \). Furthermore, for each row with index \(k = i \cdot m + j \) with \(0 \leq i, j < m \), we have the off-diagonal entries at column indices

\[
\{ (i+1) \cdot m + j, \ (i-1) \cdot m + j, \ i \cdot m + j + 1, \ i \cdot m + j - 1 \} \cap \{0, \ldots, n-1\}
\]

being set to \(-n^2\).

Write an algorithm that produces a matrix of this form in coordinate format.

(3) The compressed sparse row format is even more, well, compressed. Letting \(n \) denote the number of rows of the matrix \(A \in \mathbb{R}^{n \times n} \), we let \(R \) be an array of integers of length \(n + 1 \), and we let \(C \) be an array of integers and \(V \) be an array of floating-point numbers, both of which having length \(V[n] \). Their significance is as follows.

The last entry of \(V \) is the number of non-zero entries in the matrix \(A \). Similar as with the coordinate format, the array \(C \) saves the column index of each entry, and the array \(V \) saves the numerical value of each entry. The array \(R \), however, is read differently from the Coordinate format.
For any $0 \leq i < n$, every index $R[i] \leq k < R[i+1]$ corresponds to a non-zero entry at row i and column $C[k]$ with value $V[k]$.

For instance, the matrix A used as an example above would be described in a C data structure as

```c
int R[7] = { 0, 3, 5, 7, 9, 9, 10 };
int C[10] = { 0, 1, 2, 1, 2, 4, 5, 0, 2, 4 };
int V[10] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
```

Write a method that on input n, R, C, V, and x outputs the product Ax. You may use the above matrix as an example.

(4) In practice, it is convenient to assemble a matrix first in coordinate format and then convert it into compressed sparse row format for faster matrix multiplication. Write an algorithm that transforms a matrix in coordinate format into a matrix in compressed sparse row format.

(5) A sparse matrix A arising in numerical partial differential equations may have k non-zero entries per row. Suppose that integers/indices are saved with 4 bytes each and that floating-point values occupy 8 bytes. If matrix has size $N \times N$, how much memory does it occupy for each of the previous three formats? Give an example with $N = 10^3, 10^6, 10^9$ and state with decimal (or binary) prefixes (Kilo,Mega,Tera,...).

Remark 1
The sparse matrix formats require some overhead to describe the non-zero structure of the matrix. This overhead pays off in many applications because the number of non-zero entries is magnitudes smaller than the number of total entries. For example, for $N \times N$ matrices in finite element methods, the number of non-zero entries grows only linearly in N instead of quadratically.

Different sparse matrix formats have different advantages and disadvantages. The coordinate format occupies a bit more memory than the compressed sparse rows format, but it is rather easy to append (or erase) matrix entries. A matrix in compressed sparse row format is less easy to modify, but the format is rather compact.

A major advantage of the compressed sparse row format is that the matrix-vector product can be parallelized over the rows, which gives a considerable speed up on many-core CPUs.