Sections 6.2 - 6.5

1. (a) We have

\[A = \begin{pmatrix} 6 & -2 \\ 6 & -1 \end{pmatrix} \]

(b) The characteristic polynomial of \(A \) is

\[p_A(\lambda) = \det(A - \lambda I) = \begin{vmatrix} 6 - \lambda & -2 \\ 6 & -1 - \lambda \end{vmatrix} = \lambda^2 - 5\lambda + 6 = (\lambda - 2)(\lambda - 3) \]

Thus the eigenvalues of \(A \) are \(\lambda_1 = 2 \) and \(\lambda_2 = 3 \). By computing \(N(A - 2I) \) and \(N(A - 3I) \) we find two corresponding eigenvectors \(x_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \) and \(x_2 = \begin{pmatrix} 2 \\ 3 \end{pmatrix} \).

(c) Since we know the eigenvalues and eigenvectors of \(A \), the general solution is

\[Y(t) = c_1 e^{2t} x_1 + c_2 e^{3t} x_2 = \begin{pmatrix} c_1 e^{2t} + 2c_2 e^{3t} \\ 2c_1 e^{2t} + 3c_2 e^{3t} \end{pmatrix} \]

where \(c_1, c_2 \in \mathbb{R} \).

(d) We have

\[Y(0) = \begin{pmatrix} 4 \\ 7 \end{pmatrix} \iff \begin{pmatrix} c_1 + 2c_2 \\ 2c_1 + 3c_2 \end{pmatrix} = \begin{pmatrix} 4 \\ 7 \end{pmatrix} \iff c_1 = 2, c_2 = 1 \]

Thus

\[Y(t) = \begin{pmatrix} 2e^{2t} + 2e^{3t} \\ 4e^{2t} + 3e^{3t} \end{pmatrix} \]

and \(y_1(t) = 2e^{2t} + 2e^{3t}, \ y_2(t) = 4e^{2t} + 3e^{3t} \).

2. (a) The characteristic polynomial of \(A \) is

\[p_A(\lambda) = \det(A - \lambda I) = -(\lambda - 1)(\lambda - 2)(\lambda - 3) \]

and thus the eigenvalues of \(A \) are \(\lambda_1 = 1, \lambda_2 = 2, \lambda_3 = 3 \).

By computing \(N(A-I) \), \(N(A-2I) \) and \(N(A-3I) \) we find the corresponding eigenvectors

\[x_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \ x_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \ x_3 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \]

Thus we have

\[X = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}, \ D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix} \]

(b) Let \(C = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \sqrt{2} & 0 \\ 0 & 0 & \sqrt{3} \end{pmatrix} \) and \(B = XCX^{-1} \). Then \(C^2 = D \) and therefore

\[B^2 = XC^2X^{-1} = XDX^{-1} = A \]

3. (a) Since \(A \) is a stochastic matrix, we know that \(\lambda_1 = 1 \) is an eigenvalue of \(A \). Since \(\text{tr}(A) = \frac{1}{3} + \frac{1}{6} = \frac{1}{2} \) and \(\lambda_1 + \lambda_2 = \text{tr}(A) \) the other eigenvalue of \(A \) is \(\lambda_2 = \frac{1}{2} - 1 = -\frac{1}{2} \).
Since $|\lambda_2| = \frac{1}{2} < 1 = |\lambda_1|$, 1 is a dominant eigenvalue of A and hence there exists a steady-state vector x.

(b) x is an eigenvector of A with eigenvalue λ_1. Thus

$$(A - I)x = 0 \Rightarrow x = \alpha \begin{pmatrix} 5 \\ 4 \\ 9 \end{pmatrix}$$

for some $\alpha \in \mathbb{R}$. Since x is a probability vector, we must have $5\alpha + 4\alpha = 1 \Rightarrow \alpha = \frac{1}{9}$. Thus

$$x = \begin{pmatrix} \frac{5}{9} \\ \frac{4}{9} \\ \frac{1}{9} \end{pmatrix}$$

(c) The eigenvector for $\lambda_2 = -\frac{1}{2}$ is $y = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$. Thus we may write $A = XDX^{-1}$, where

$$X = \begin{pmatrix} \frac{5}{9} & 1 \\ \frac{4}{9} & -1 \end{pmatrix}, \quad D = \begin{pmatrix} 1 & 0 \\ 0 & -\frac{1}{2} \end{pmatrix}$$

Then we may compute

$$A^n = XD^nX^{-1} = \begin{pmatrix} \frac{5}{9} + \frac{4}{9} (-\frac{1}{2})^n & \frac{5}{9} - \frac{5}{9} (-\frac{1}{2})^n \\ \frac{4}{9} - \frac{4}{9} (-\frac{1}{2})^n & \frac{4}{9} + \frac{5}{9} (-\frac{1}{2})^n \end{pmatrix}$$

Thus, for any probability vector $x_0 = \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$ we have, using $\alpha + \beta = 1$ and $\lim_{n \to \infty} (-\frac{1}{2})^n = 0$,

$$\lim_{n \to \infty} A^n x_0 = \lim_{n \to \infty} \begin{pmatrix} \frac{5}{9} + \frac{4\alpha}{9} (-\frac{1}{2})^n - \frac{5\beta}{9} (-\frac{1}{2})^n \\ \frac{4\alpha}{9} - \frac{4\alpha}{9} (-\frac{1}{2})^n + \frac{5\beta}{9} (-\frac{1}{2})^n \end{pmatrix} = \begin{pmatrix} \frac{5}{9} \\ \frac{4}{9} \end{pmatrix} = x$$

4. We have

$$A^TA = \begin{pmatrix} 5 & -2 \\ -2 & 8 \end{pmatrix}$$

The characteristic polynomial of A^TA is $p_A(\lambda) = (\lambda - 9)(\lambda - 4)$ and thus the eigenvalues of A^TA are $\lambda_1 = 9, \lambda_2 = 4$. We can find the corresponding orthonormal eigenvectors

$$v_1 = \frac{1}{\sqrt{5}} \begin{pmatrix} -1 \\ 2 \end{pmatrix}, \quad v_2 = \frac{1}{\sqrt{5}} \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

Therefore the singular values are $\sigma_1 = \sqrt{\lambda_1} = 3$ and $\sigma_2 = \sqrt{\lambda_2} = 2$.

We also have

$$A v_1 = \sigma_1 u_1 \Rightarrow u_1 = \frac{1}{3} A v_1 = \frac{1}{\sqrt{5}} \begin{pmatrix} -2 \\ 1 \end{pmatrix}$$

$$A v_2 = \sigma_2 u_2 \Rightarrow u_2 = \frac{1}{2} A v_2 = \frac{1}{\sqrt{5}} \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

Thus the singular value decomposition of A is $A = U \Sigma V^T$ where

$$U = \frac{1}{\sqrt{5}} \begin{pmatrix} -2 & 1 \\ 1 & 2 \end{pmatrix}, \quad \Sigma = \begin{pmatrix} 3 & 0 \\ 0 & 2 \end{pmatrix}, \quad V = \frac{1}{\sqrt{5}} \begin{pmatrix} -1 & 2 \\ 1 & 1 \end{pmatrix}$$

5. (a) We have using $x^T x = y^T y = 1$ and $y^T x = x^T y = 0$

$$Ax = xy^T x + yx^T x = y$$

$$Ay = xy^T y + yx^T y = x$$
Therefore

\[A(x + y) = x + y \]
\[A(x - y) = y - x = - (x - y) \]

so that \(x + y \) is an eigenvector with eigenvalue 1 and \(x - y \) is an eigenvector with eigenvalue \(-1\).

(b) We have

\[A z = 0 \iff xy^T z + yx^T z = 0 \iff (y^T z)x + (x^T z)y = 0 \]

Since \(x, y \) are linearly independent, this is equivalent to \(y^T z = x^T z = 0 \). This means that the eigenspace for the eigenvalue 0 is the orthogonal complement of \(S \) in \(\mathbb{R}^n \). Since \(\dim S = 2 \), the eigenspace has dimension \(n - 2 \) and thus 0 is an eigenvalue with \(n - 2 \) linearly independent eigenvectors.

(c) Since there exists one eigenvector for each of the eigenvalues \(-1\) and 1 and 0 has \(n - 2 \) linearly independent eigenvectors, we conclude that \(A \) has \(n \) linearly independent eigenvectors (recall that eigenvectors corresponding to distinct eigenvalues are automatically linearly independent) and hence \(A \) is diagonalizable.

6. Clearly if \(A = \lambda I \) then it is diagonalizable with a single eigenvalue \(\lambda \) of multiplicity \(n \).

Conversely, suppose that \(A \) is diagonalizable so that \(A = XDX^{-1} \), where \(D \) is the diagonal matrix whose diagonal entries are all equal to \(\lambda \). But then \(D = \lambda I \) and therefore

\[A = X(\lambda I)X^{-1} = \lambda XX^{-1} = \lambda I \]