1 Homework 2

Exercise 5.4: We use induction on \(n \). Suppose that \(n = 0 \). The sum
\[
\sum_{i=0}^{0} x^i = x^0 = 1.
\]
On the other hand, \(\frac{1}{1-x} = 1 \), so the base case holds. Suppose now that the statement is true for a given \(n \), we will show that it holds for \(n + 1 \).
\[
\sum_{i=0}^{n+1} x^i = \sum_{i=0}^{n} x^i + x^{n+1} = \frac{1-x^{n+1}}{1-x} + x^{n+1} = \frac{1-x^{n+2}}{1-x}
\]

Exercise 6.1 (i): \(0 \notin (0,1) \) because \(0 < 0 \) is false. \(0 \in [0,1] \) because \(0 \leq 0 \leq 1 \) is true. \(0 \in [0,1] \) because \(0 < 0 \) is true. \(0 \notin (0,1) \) because \(0 < 0 \) is false.

(ii) \([a,b] \setminus (a,b) = \{a,b\} \).

(iii) If \(a \geq b \), then is clear that \((a,b) = \emptyset \), for otherwise, if there is \(x \in (a,b) \) we would have \(a < x < b \) and therefore \(a < b \). Suppose then that \((a,b) = \emptyset \) and let’s show that \(a \geq b \). Since \((a,b) = \emptyset \), the real number \(\frac{a+b}{2} \notin (a,b) \). This means that \(\frac{a+b}{2} \leq a \) or \(b \leq \frac{a+b}{2} \). Therefore \(a + b \leq 2a \) or \(2b \leq a + b \). It follows that \(a \geq b \).

Similarly, \((a,b) = \emptyset \) if and only if \(a \geq b \), \([a,b] = \emptyset \) if and only if \(a \geq b \), and \([a,b] = \emptyset \) if and only if \(a > b \).

(iv) Given that \(a \leq b \), both \(a \) and \(b \) belong to \([a,b] \). Since \([a,b] \subseteq (c,d) \) we have that \(a \in (c,d) \) and \(b \in (c,d) \). This happens if and only if \(c < a \leq b < d \).

Exercise 6.4: Let \(P(x) = "x \in A", Q(x) = "x \in B", R(x) = "x \in C" \) and \(T(x) = (P(x) \land Q(x)) \lor (P(x) \land R(x)) \)

<table>
<thead>
<tr>
<th>(P(x))</th>
<th>(Q(x))</th>
<th>(R(x))</th>
<th>(Q(x) \lor R(x))</th>
<th>(P(x) \land (Q(x) \lor R(x)))</th>
<th>(P(x) \land Q(x))</th>
<th>(P(x) \land R(x))</th>
<th>(T(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

Exercise 6.5: (i) Suppose that \(A \subseteq B \). \(B \subseteq A \cup B \) always holds, so we only need to show that \(A \cup B \subseteq B \). Let \(x \in A \cup B \). This means that \(x \in A \) or \(x \in B \). If \(x \in B \), we are done. So suppose that \(x \in A \). However, since \(A \subseteq B \) then \(x \in B \) again. For the other implication, suppose that \(A \cup B = B \). Then \(A \subseteq A \cup B = B \) shows that \(A \subseteq B \).

(ii) Same reasoning as (i).

Exercise 6.6: Suppose by contradiction that \(x \in A \) but \(x \notin C \). If \(x \in B \) then \(x \in A \cap B \subseteq C \), contradicting that \(x \notin C \).
Exercise 7.2: (i) False, pick $m = 2, n = 1$.
(ii) True, pick $m = 1, n = 1$.
(iii) True, pick $n = m$.
(iv) True, pick $m = 1$.
(v) True, pick $m = n$.
(vi) False, pick $m = n + 1$.

Problem 13: Induction on n. Case $n = 4$ follows from $4! = 24 > 16 = 2^4$. Suppose now that for a given $n \geq 4$, we know that $n! > 2^n$. Then we have the following chain of inequalities

$$(n + 1)! = (n + 1) \cdot n! \geq 5n! \geq 2n! > 2 \cdot 2^n = 2^{n+1}$$