1 Homework 7

Exercise 16.4: Let \(c \in D(b, r) \). By definition, this means that \(c|b \) and \(c|r \). But then \(c|bq + r = a \) and therefore \(c \in D(a, b) \).

Exercise 17.1: \(7684 = 4148 + 3536, 4148 = 3536 + 612, 3536 = 5 \cdot 612 + 476, 612 = 476 + 136, 476 = 3 \cdot 136 + 68 \). Now we go back. \(68 = 476 - 3 \cdot 136 = 476 - 3 \cdot (612 - 476) = 4 \cdot 476 - 3 \cdot 612 = 4 \cdot (3536 - 5 \cdot 612) - 3 \cdot 612 = 4 \cdot 3536 - 23 \cdot 612 = 4 \cdot 3536 - 23 \cdot (4148 - 3536) = 27 \cdot 3536 - 23 \cdot 4148 = 27 \cdot (7684 - 4148) - 23 \cdot 4148 = 27 \cdot 7584 - 50 \cdot 4148 \). So pick \(m = 27 \) and \(n = -50 \).

Exercise 17.2 By 17.1 above, pick \(m = 27, n = 50 \).

Exercise 17.6 Since \(\gcd(a_1, b_1) = 1 \), there exist integers \(m, n \) such that \(ma_1 + nb_1 = 1 \). Since \(a_1b_2 = a_2b_1 \) then also \(ma_1b_2 = ma_2b_1 \). But \(ma_1 = 1 - nb_1 \) and therefore, after substituting, we get \((1 - nb_1)b_2 = ma_2b_1 \) and \(b_2 - nb_1b_2 = ma_2b_1 \). But then \(b_1|b_2 \). By symmetry \(b_2|b_1 \) and therefore \(b_1 = b_2 \) and also \(a_1 = a_2 \) as desired.

Problem IV.4: Since \(98 = 2 \cdot 7^2 \), then 98 is a square of a rational number if and only if 2 is. But we have seen that there is rational number whose square is 2.

Problem IV.11: Given a pair of integers \((a, b)\), remember that the sequence \(a_i \) is defined by \(a_0 = a, a_1 = b \) and \(a_{k-1} = q_k a_k + a_{k+1} \), where each step is an Euclidean division. By working our way backwards as in Exercise 17.1, we have unique integers \(m_k \) and \(n_k \) such that \(a_k = am_k + bn_k \). Let’s prove that \(m_k/n_k - m_{k-1}/n_{k-1} = (-1)^k \) by induction on the length \(N \) of the sequence \(a_i \).

The base case is \(N = 1 \). By our definitions, \(a_0 = 1 \cdot a + 0 \cdot b \) and \(m_0 = 1, n_0 = 0 \). Similarly, \(a_1 = b = 0 \cdot a + 1 \cdot b \) and therefore \(m_1 = 0, n_1 = 1 \). By plugging these values, one establishes the base case. Now the inductive step; suppose that there is a sequence of length \(N + 1 \). Let \(a_0 = q_1 a_1 + a_2 \). Call \(a_k', m_k' \) and \(n_k' \) the values that we get by applying the algorithm to the pair \((a_1, a_2)\), which has length \(N \). Let’s determine the relations these have with the \(a_k, m_k \) and \(n_k \). Clearly \(a_k' = a_{k+1} \). Now, by definition of \(m_k \) and \(n_k \) we have that \(a_{k+1} = am_{k+1} + bn_{k+1} \). By definition of \(m_k' \) and \(n_k' \) we have instead that \(a_{k+1} = a_k' = a_1 m_k' + a_2 n_k' = a_1 m_k' + (a_0 - q_1 a_1) \cdot n_k' = a_0 n_k' + (m_k' - q_1 n_k') a_1 \).

By construction, we must have \(m_{k+1} = n_k' \) and \(n_{k+1} = m_k' - q_1 n_k' \) for all \(0 < k \leq N \). Now, \(m_{k+1}n_k - m_k n_{k+1} = n_k' (m_k' - q_1 n_k') - n_k' (m_k' - q_1 n_k') = n_k' m_{k+1} - n_k' m_k' = -(n_k' m_{k+1} - n_k' m_k') = -(n_k' m_{k+1} - n_k' m_{k+1}) = (-1)^k = (-1)^{k+1} \) for \(0 < k < N \). The last check we need is \(m_1 n_0 - m_0 n_1 = -1 \), but this is the same reasoning as in the base case.