

Homework 9

Exercise 21.1 The definition of addition is given by
\[[a] + [b] = [a + b]. \] To see that it’s well defined, pick \(a' \sim a \) and \(b' \sim b \). This means that \(m|a - a' \) and \(m|b - b' \). But then
\[m|a - a' + b - b' = a + b - a' - b' \] and therefore \(a + b \sim a' + b' \). The check for the subtraction is exactly analogous.

Exercise 22.1 (i) reflexive, symmetric, transitive. The equivalence classes are the sets of even and odd integers.
(ii) symmetric
(iii) symmetric
(iv) reflexive, symmetric, transitive. The equivalence classes are \(\{0\} \) and \(\{n, -n\} \) for \(n \) positive integer.
(v) symmetric, transitive
(vi) symmetric
(vii) reflexive, symmetric, transitive. The equivalence classes are the lines \(x = k \) for some constant \(k \in \mathbb{R} \).
(viii) reflexive, symmetric, transitive. The equivalence classes are the circles centered at the origin \((0, 0) \in \mathbb{R}^2\).

Problem V.3 By definition of base ten, \(n = \sum_{0 \leq i \leq k} a_k 10^i \). Now, \(9|n \) if and only if \(n \equiv 0(9) \), and this happens if and only if \(\sum_{0 \leq i \leq k} a_k 10^i \equiv 0(9) \). Since however \(10 \equiv 1(9) \) we have that \(n \equiv \sum_{0 \leq i \leq k} a_k (9) \) so that \(9|n \) if and only if \(9|\sum_{0 \leq i \leq k} a_k \).

Problem V.17 (i) symmetric, transitive.
(ii) reflexive, symmetric
(iii) reflexive, symmetric, transitive. Only one equivalence class, the whole set \(\mathbb{Z}^+ \).
(iv) reflexive, symmetric, transitive. The equivalence classes are \(\mathbb{Z}^+ \) and \(\mathbb{Z}^- \).
(v) symmetric, transitive.
(vi) symmetric.

Problem V.18 We will explicitly check one case to show how it works, and then just state the result. (i) is for instance well defined: pick \(a', b' \) such that \(a/b = a'/b' \). By definition, this means that \(ab' = a'b \). Now, \(f(a/b) = a^2/b^2 \) and \(f(a'/b') = (a')^2/(b')^2 \), so that we have to check that \(a^2/b^2 = (a')^2/(b')^2 \). Again by definition, this happens if and only if \(a^2(b')^2 = (a')^2b'^2 \), which is true since we know that \(ab' = a'b \).
(ii) not well defined
(iii) not well defined
(iv) not well defined
(v) well defined.

Problem V.19 (i) is not well defined since \([0]_6 = [6]_6\) but \([1]_4 \neq [7]_4\).
(ii) is well defined. In fact, pick $a' \sim a$, meaning that $6|a - a'$. Then $4|2 \cdot (a - a')$ because $2|a - a'$, therefore f is well defined.

(iii) is well defined. Again suppose that $6|a - a'$. We have to show that $4|a^2 - (a')^2 = (a - a')(a + a')$. Since $2|a - a'$ we get that $2|a + a'$, therefore 4 divides the product, as desired.