1. (10 pts) Let P, Q, R be statements. Show, using truth tables, that the statements $(P \text{ and } Q) \Rightarrow R$ and $P \Rightarrow (Q \Rightarrow R)$ are equivalent.

2. (a) (4 pts) Give a proof or counterexample for the following statement: For all integers m there exists an integer n such that mn is even.

(b) (6 pts) Prove that among two consecutive integers n and $n + 1$ at least one is odd.

3. Let A, B, C be sets.

 (a) (7 pts) Show that $A \cap (B \cup C) \subseteq (A \cap B) \cup C$.

 (b) (3 pts) Show that the equality $A \cap (B \cup C) = (A \cap B) \cup C$ does not hold in general by giving an example of three sets A, B, C for which the equality fails.

4. (10 pts) Prove that 4 divides $3^{2n+1} + 1$ for all positive integers n.
1. The truth table is as follows.

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>R</th>
<th>$(P \text{ and } Q) \Rightarrow R$</th>
<th>$Q \Rightarrow R$</th>
<th>$P \Rightarrow (Q \Rightarrow R)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

We see that the columns corresponding to $(P \text{ and } Q) \Rightarrow R$ and $P \Rightarrow (Q \Rightarrow R)$ are identical and hence these statements are equivalent.

2.
 (a) For all m we can take $n = 2$ so that $mn = 2m$ which is even, so the statement is true.

 (b) We argue by contradiction. Suppose that both n and $n + 1$ are even. Then we have $n = 2a$ and $n + 1 = 2b$ for some integers a, b. Thus

 $$1 = n + 1 - n = 2a - 2b = 2(a - b)$$

 Then we must have $a - b > 0$ and since this is an integer it follows that $a - b \geq 1$. But this implies that $1 = 2(a - b) \geq 2$, which is a contradiction.

3.
 (a) Let $x \in A \cap (B \cup C)$. Then $x \in A$ and $x \in B$ or $x \in C$.

 If $x \in B$, we have that since also $x \in A$, $x \in A \cap B$ and thus $x \in (A \cap B) \cup C$.

 If $x \in C$, then $x \in (A \cap B) \cup C$ as well.

 In all cases, we have shown that $x \in (A \cap B) \cup C$ and therefore

 $$A \cap (B \cup C) \subseteq (A \cap B) \cup C$$

 (b) Let $A = \{1\}$, $B = \{1\}$, $C = \{2\}$. Then $A \cap (B \cup C) = \{1\}$, while $(A \cap B) \cup C = \{1, 2\}$, so the two sets are not equal in this case.

4. We use induction on $n = 1$.

 Base case: For $n = 1$, we have $3^{2n+1} + 1 = 28 = 4 \cdot 7$, a multiple of 4.

 Inductive step: Suppose that for some integer $k \geq 1$, 4 divides $3^{2k+1} + 1$, thus we have $3^{2k+1} + 1 = 4q$ for some integer q and so $3^{2k+1} = 4q - 1$. Then we have

 $$3^{2(k+1)+1} + 1 = 3^{2k+3} + 1 = 9 \cdot 3^{2k+1} + 1 = 9(4q - 1) + 1 = 36q - 8 = 4(9q - 2)$$

 and thus 4 divides $3^{2(k+1)+1} + 1$, as we want.