1. Let H, K bet two subspaces of a vector space V. Their sum is

$$H + K = \{ w = u + v : u \in H, v \in K \}.$$

Show that $H + K$ is also a subspace of V and

$$\dim(H + K) \leq \dim(H) + \dim(K).$$

2. Let V be a vector space equipped with an inner product $\langle \cdot, \cdot \rangle$. Prove the Cauchy-Schwartz inequality:

$$|\langle x, y \rangle|^2 \leq \langle x, x \rangle \langle y, y \rangle \quad \forall x, y \in V.$$

3. Let x_1, \ldots, x_r be a set of orthonormal vectors in \mathbb{R}^n. If $Q \in \mathbb{R}^{n \times n}$ is orthogonal, Show that Qx_1, \ldots, Qx_r is also an orthonormal set.

4. Let $T : \mathbb{C}^n \to \mathbb{C}^n$ be a linear mapping and $S \in \mathbb{C}^{n \times n}$ be nonsingular. Suppose the representing matrix of T with respect to a basis $\{u_1, \ldots, u_n\}$ is A. Express the representing matrix of A with respect to the new basis $\{Su_1, \ldots, Su_n\}$ in terms of A and S.

5. Let $S, T : V \to V$ be two linear mappings over a finitely dimensional vector space V. If the product ST is one-to-one, show that both S and T are one-to-one.