1. A matrix $A \in \mathbb{R}^{n \times n}$ is said to be stable if the real parts of all its eigenvalues are negative. Prove that a matrix A is stable if and only if there exists a symmetric positive definite matrix P such that

$$PA + A^TP < 0.$$

2. Prove that the max-matrix norm defined as

$$\|X\|_{\text{max}} = \max_{ij} |X_{ij}|$$

is not an operator norm.

3. Let $\| \cdot \|_F$ be the Frobenius norm. Prove that for any $X, Y \in \mathbb{R}^{n \times n}$ it holds

$$\|XY\|_F \leq \|X\|_2\|Y\|_F.$$

4. Let $A \in \mathbb{R}^{m \times n}$. Prove that the Moore-Penrose pseudoinverse A^+ is a minimizer of the optimization

$$\min_{X \in \mathbb{R}^{n \times m}} \|AX - I\|_F.$$

5. Let $X \in \mathbb{R}^{n \times n}$ be a symmetric positive semidefinite matrix such that $-1 \leq X_{ij} \leq 1$. Define $\arcsin(X)$ component-wisely as

$$\arcsin(X) = (\arcsin(X_{ij}))_{1 \leq i,j \leq n}.$$

Prove that $\arcsin(X) \succeq X$.
