Math 245B Assignment #2

Due Date: March 3, 2017

1. Express the following optimization

\[
\begin{aligned}
 \min & \quad x_1^2 + x_2^2 + x_3^2 \\
 \text{s.t.} & \quad \begin{bmatrix} x_3 & x_1 & x_2 \\ x_1 & 1 & x_3 \end{bmatrix} \succeq 0, \\
 & \quad x_1 - x_2 + x_3 \geq 3, \\
 & \quad x_1 - x_2 \geq 2, -x_2 + x_3 \geq 1
\end{aligned}
\]

as an equivalent linear conic optimization problem, either in the primal or dual format. Point out what is the corresponding vector space \(V \), the cone \(K \), and the linear mapping \(A: V \to \mathbb{R}^m \), the objective vector \(c \in V \) and the constant \(b \).

2. Let \(K \) be the monotonicity cone in \(\mathbb{R}^4 \):

\[
K = \{ x \in \mathbb{R}^4 : x_1 \geq x_2 \geq x_3 \geq x_4 \}.
\]

Consider the linear conic optimization problem

\[
\begin{aligned}
 \min & \quad 6x_1 - 3x_2 - 2x_3 - x_4 \\
 \text{s.t.} & \quad x_1 + x_2 + x_3 = 7, \\
 & \quad x_2 + x_3 + x_4 = 3, \\
 & \quad x \in K.
\end{aligned}
\]

Formulate the dual optimization problem, and give the optimality conditions. What is an optimizer?

3. Let \(K \) be a cone in \(\mathbb{R}^n \) and \(A \in \mathbb{R}^{m \times n} \). Suppose \(c \in \mathbb{R}^n, \hat{y} \in \mathbb{R}^m \) satisfy \(c - AT\hat{y} \in \text{int}(K^*) \). Show that the set

\[
\{ x \in K : Ax = 0, c^T x \leq 0 \}
\]

consists of the single point of zero.

4. Let \(c, a_1, \ldots, a_m \in \mathbb{R}^n \). If \(c^T x \leq \max_{1 \leq i \leq m} a_i^T x \) for all \(x \geq 0 \), show that there exists \(\lambda := (\lambda_1, \ldots, \lambda_m) \in \mathbb{R}^m \) satisfying

\[
\lambda \geq 0, \quad c^T \lambda = 1, \quad c \leq \sum_{i=1}^m \lambda_i a_i.
\]